2017小学数学故事:连续统之迷

2017-07-25 11:11:51来源:网络

  新东方在线小学网为大家整理《2017小学数学故事:连续统之迷》,希望同学们喜欢,更多内容请关注新东方在线小学网

  2017小学数学故事:连续统之迷

  (注:文中将阿拉夫零记为alf(0),阿拉夫一记为alf(1),依次类推…)

  由于alf(0)是无穷基数,阿拉夫是有异于有限运算的神奇运算,因而,以下的结果也不足为怪:

  alf(0)+1=alf(0)

  alf(0)+n=alf(0)

  alf(0)+alf(0)=alf(0)

  alf(0)Xn=alf(0)

  alf(0)Xalf(0)=alf(0)

  alf(0)是自然数集的基数。一个无穷基数,只要是可数集,其基数必为alf(0)。由可排序性,可知如整数集、有理数集的基数为alf(0);或由它们的基数为alf(0),得它们为可数集。而实数集不可数(可由康托粉尘线反证不可数)推之存在比alf(0)更大的基数。乘法运算无法突破alf(0),但幂集可突破:2alf(0)=alf(1)

  可以证明实数集的基数card(R)=alf(1)。进而,阿拉夫“家族”一发而不可收:2alf(1)=alf(2);2alf(2)=alf(3);……

  alf(2)究竟有何意义?人们冥思苦想,得出:空间所有曲线的数目。但而后的alf(3),人类绞尽脑汁,至今为能道出眉目来。此外,还有一个令人困惑的连续统之迷:“alf(0)与alf(1)之间是否还存在另一个基数?”

  公元1878年,康托提出了这样的猜想:在alf(0)与alf(1)之间不存在其它的基数。但当时康托本人对此无法予以证实。

  公元1900年,在巴黎召开的第二次国际数学家会议上,德国哥庭根大学教授希尔伯特提出了举世闻名的23个二十世纪须攻克的数学问题中,连续统假设显赫的排在第一个。然而这个问题的最终结果却是完全出人意料的。

  公元1938年,奥地利数学家哥德尔证明了“连续统假设决不会引出矛盾”,意味着人类根本不可能找出连续统假设有什么错误。1963年,美国数学家柯亨居然证明了:“连续统假设是独立的”,也就是说连续统假设根本不可能被证明。

  更多小升初辅导内容,请关注新东方在线小学网(http://xiaoxue.koolearn.com/),我们将为小升初学生提供最新最全的复习资料。


英语+新概念学习资料大礼包

微信扫一扫 自动获取网盘链接

更多资料
更多>>
更多内容

小学英语资料大礼包合集

扫描下方二维码自动领取

更多>>
更多英语课程>>
更多>>
更多资料