2019年西师大版数学教案:《10的认识》教案(三)

2019-08-26 18:38:00来源:网络

\ACTJdoIKgVeW3Ql7CRvZZFnnWCFnFrY1Btaczc57oHEXjWFmM4IkI1YQMpuZCtYYRbYz45JZ25HvbG7qE+jP4+Hcxe35vLI8UmeXuVjJUwt0RQRGW14CjnzzJtJqk6mzi0Bb5TOJgV18Xhl0vq3XWYGO5hAlGr/sxoOtj/oT2c/YrJDtb8ZHr48d6xTNTWj+m/lyfgbae8Sqk1UCbZW9ci5W8tQCnSkTJXI26aBCwpC1k4H13UoSq0CF13qPCO7stdcucywiEgPPp2qCYtZaJsZRwVhBZLs6LkwOQWFzE9rmnaDzXtlwPMtcpPy4xIoQQgghKCTQQgghxIZIoIUQQogNkUALIYQQG3KJQN99o0KG1T53tH/1HYVdeDd6sDcurer76hvfVlO9ia16cw16c1/XzXaRnWz7d9zgNvMBOWadXznGYi1LZgm5u3ZHrlyI1t3QjH30rtQqyJ3OmfYs/627sbvvCGXbyNiIkmPGNxRm3WXWbHfcdq89VphWzUMHmRyKri+xL5sJ9Nfx8T4sksT/if2rReB7T0d48eT87kqGVEIxv1bu///J+/4x97hToDNJg7XHJq+KzcxYRP1elUC7BZpp3yq3UgyrG6GdhWxn30Qfewn058fxl0acv7c0A/G9p5Z/kO+E37O2UYFGjk35fPxOSGP/f20sfm1czq8xvzPMxD5KnFmB9tqe2chsfhjfED/YNjN2Z326QqCv6n+XnR1FMLM5z2xOxB4sE+hMshv5+ngcFX3+G/t7TyOfx3IRnt9WcozGp5zIvj6O91Ggvz6O9/OYfD6Ot4lCd4qz1U4mwVTmiK3jCXQmYUb1K6DjgvgRxWTHpmaVeERxi/hxt6hV5tIqax0T+3HJLOWC4ev4eNQ+3j7DfO9pVkh+gfnN2pglCko4JwL99fH+tyCPgg3CJC/PdzShMzasJNuVnDPHr0qeTFLv8IGNgdVUx3knEWPnstL3uzYj4l/2FejgY2K8Te57T5FEnvXbagMV6PH1EoEm/zcv5YNRbqVAo+cyyTojcFF8jceQjYO1HnYWaGQTVfUpa4exx25Or5rLrEBn1rNYR/sMoMEQTT7yMTEF8L2nY9Kc2an4fW4zSh6Wb5afIYuuoNkFXdmcoAktK9DVpMn0I7LbAZqkM2s2IzbWMcQ2cq5iJyuenfPlwY5ZNsYk0HuxqUDHHxNngsf73lMrMDmBzn0sz4gU4+vfruX/Bh2BJil0LBnBjcpbiSnylxUCRmArAsWwUqAje4xfzPgxglgd54ydVWQF2toURrYkznuwp0B/fRzvjlDkggf/3tMogZgEfo82rAQZJVNr8dECTdzFfRdIYuE2UfN2M1dPSNuIbbY+ipWcx77cLdDPbOcqIUPncjw31h9fi71ZItDVZPf18d4iFNnvPfWCuer3rO+MQHvvTd/+PGY1GYffH/2/vdnPQXcS7ei9fqKxlE2sXQmNFejsRgCxgY5FxwYlK5wr+t9hZxchY+ZyrDOrl2lP3MNtM7RzcFzpG5IMUQHaeUyPIxbf8XW23944WOPLboAqohaJf3UeLd+rQuiNP9peFNueHYaKne6NQoXqXEZ9FHujGRJCCCE2RAIthBBCbIgEWgghhNgQCbQQQgixIRJoIYQQYkMk0EfvHbnsXbK6k1IIIcSMS9Wh+pxll93Z+Y5j6KM6d42DEEKI5+HllGAmdJnnIbMCLaEVQgjRwcsqSPRPMGZloyta5B9VWD6Mx3XlLIQQwuNlFSEj0NVjHf/dRwghhDiOHyTQs6tgr+xMZFHRRnzTFbQQQgiPyxUhK06seM2EFb0TGz03tinRFUII0cVTqQcjdtmPuFGBZu8KH+voLm4hhBAeT6UEjHhl7+KufMQ9u5K2yka+CyGE+Nk8nRIgH4UjV8GR8KK2o7a9ssxGQAghxM/i5ZXAEutILNGPnisCjZ4TQgjx87hMCe74+2v0t+CoXNTe7GN09MrYKqe/QQshhDiOH3AFLYQQQjwjEmghhBBiQyTQQgghxIZIoIUQQogNkUALIYQQG7KFQKOPPEV1vWOI7VcH6WvneCLPrLPn2Daz7TA2hBBiBdtkmugfiESJFhWGKIFHj2atfCxsNahAW49+If9UJTueqK/R+KNtZf3y6gohRCfbZZrqPwkZX3t1kPeX8vk43t4ex2djk1kxRTc+2fFj243qzPxF7TN+MTaEEKLCdpmGEd3MR+PbCvTn47e/9wl0dNwqi/549ay2Zn55G4kVAv3sn5wIIZ6TLbJMlKS9BP/9ejwX2coKCXuFTyXyr4/j/SKBjvzKbFxYYffqRfM9E/dZu97cZPzyjgshRCfbZBomiUbns0LRXedugWZFtrIZQdr3bCFtIVfOXj2kP939FEKILNtkmoww7C7QNIBAZ217Aua13/HpRGTHuvpF6nhtoG0hNphPH4QQooNtMk3lChoV9UryviRZg1fQlU1F5ioaqW+dt8YymiPmShitFx0bjzObACGE6GabTDNLht4V2KxO5nhVoCN7VDInBLryKQEzpqxAI2W9cqjQZq6gkY2VBFoIsQvbZBrvaqhDiK3jyDH0qnB2bIVAW/bQsuzH1Oc61SvU2fnsJmk2vug8RJsqb+4k0EKIK9gm00RXOWyStY6jP15bGUEK+fOY1dvR+ahVdROTeT9+FM3aiI6x4snMF3uVLYQQq9g60zBXYUy9il36qvgmED+jTc9ssxJtfqrnvKvXTH+8sizRlbUQQnSiTCOEEEJsiARaCCGE2BAJtBBCCLEhEmghhBBiQyTQLw777G5001hUnrGVLZ+14d2tL4QQu6EM9eIwAj0T46j++OgTIoTs+8hX63wkwhJoIcTOKENtwOfjfzF5//hqa9d6fMl63nt2LiNy7ONx6HPRmU2A9wnA+P48D2+Pzu8UE0IIHgn03Xw+jj9a8PuflXRpQ+bj6aiM98wy+jHyVVfQM3/NNj4f/2+Ovj6O98Z5EEKIDBLozfh89FxFj8J5Pj4eG+tEV9djndnr6BhzNRzZ8uwyAv3/VfPX8fEugRZC3IsEejM+H+9HVZ8jEY7qReW8OpkbsZi/BWf+Ns7793k8Gv/dqhBCZJBAb8Xn8XAu29ibmrwrZ/QKmvl7ctfH6JFfyJV3xv9vvj4e5U2SEEJUkUBvxOej97ugI8FCPq5mBBi5QmU+BrdArs7zAv15fEidhRAbIIHehK+Pd+hvnujHxt9lx9eRQFtX0N5HycxH6lWBZv06l4M+Ifj81EfbQogtkEDvwPkO4uM4Pj8+Du8ajhVo9OYqS9C9+p4Aeh89R/1BrtaRspmPuIUQYgeUnW7m6+P9HzHrehY689Hx+Bq5Ao7aGM9n/p4c+cF8smC38+vubT0DLYTYAQn0C8OKmHfVzPzdNzqGsPrKNyvoQghxFcpQQgghxIZIoIUQQogNkUALIYQQGyKBFkIIITZEAi2EEEJsyMsJNPKfrTL/UAO54zfzD0TYukIIIX4Gl6oC+/xrxc75t/d6Vg8t79Vny0mghRBCnLlcoJnXHfaQTUDmn2dY9hCfWP+EEEL8PF5eoBEbXVfIlf+yJVEWQghx5uUE+nwFyl6hZq5omX4wfwMXQgjxs3k5gbbaqNzklRFotD19vC2EEGLG0wg0I1zZvyeztiNB1pWyEEKILLcINPvx71gftcPWzXwkztidtakraCGEEDNuecwqKlOpP2sjI34ZPzMbA90sJoQQYsZtH3FnyzBXwufy3tX7uU7mRjHGN8s/tg0hhBCvzY/9RyUdGwG2zsyuPuIWQggx4+muoFfYRjcOyNV31S8JtBBCiOO4WKCFEEIIgSGBFkIIITZEAi2EEEJsiARaCCGE2BAJtBBCCLEhP0Kgr7gzOvNPUK70a8VjY1msx98iu95/X9vl7nfWt4zvzJxmx5otU6HyJANbdpc4EQLhR0Qr889NxkXMJNqMP5bodJEVaLRe5dG06DVSPjpWeeaejRu2HaTfXj20DjvWGVuVsb5CoLNjLcSd/IhIrVxpeK/RH8QO6y8C4i9ivzNhZsZt5s8uAjATMMSetRFk/EHGLROjTD9QmFjPiG5kIzPWQtzNj4jSFQLNtr+qvYotJjlmk2ZnO97V3CqBRtu+S6DZ81GbUd1MbDJzw9iQQItX52WjNCOyyFVIZCvy6SqBPtua2bSuSj0fkMTGjkXmau6KK2hU6LICPZ5HfWLmdKyHjNloY1aeEbho7LICnd10SZzFM/GykZq5omFej3WzQhOVyZC90mTLeokfFU/EXjWpVgUaaSu7gWDE2fIrMzZXiBSzsWE3EYytcxmJs3gmXjJao4TcKdBW4uwW6Exy8a6yViWqbLvIZuD8Okrk2c0DMj7euLL9Y+e1Y06vEqnsRggde8bOdzkJtHgmXjJaWUH+fj9L2uhu/tkEemanehWMiltFOKN+IueZK7uovZ0EevaaHevs/DB9jsqw6wJFAi2ejZeLVnQRe0kbee29Z5M74m/ULmoLsZ+1zV7JZdtmRWO1QJ9tWz51CUN1TrvnvFq/IrrMvArxjPyIiGYTRVagEVtZgc4kH+QKi2mHKbNK/Flb2Ss0dqN39RV0dk6rc75yXqv1orq6ghbPxo+I1hUCPROJ8SqKscP6i9Ah9KuSZdUGKkqdAlCZl26BzvqF9j3zSUXWFlsv658EWjwbLx2taEKZfWTpHZ/Z8Ox7tpj2WLxNRKb+7HylDJPwM0m3Y+OQESbUvwzZOa30IfKhYqt7I9RRX4hdUCQLIYQQGyKBFkIIITZEAi2EEEJsiARaCCGE2BAJtBBCCLEhEmghhBBiQyTQQgghxIZIoIUQQogNkUALIYQQGyKBFkIIITZEAi2EEEJsiARaCCGE2BAJtBBCCLEhEmghhBBiQyTQQgghxIZIoIUQQogNkUALIYQQGyKBFkIIITZEAi2EEEJsiARaCCGE2BAJtBBCCLEhEmghhBBiQyTQQgghxIZIoIUQQogNkUALIYQQGyKBFkIIITZEAi2EEEJsiARaCCGE2BAJtBBCCLEhEmghhBBiQyTQQgghxIZIoIUQQogNkUALIYQQGyKBFkIIITZEAi2EEEJsiARaCCGE2BAJtBBCCLEhEmghhBBiQ24X6Le3t79+ovOznxU+Vcp69c/n2LpMmQrncUVtsT5l+15hdfsrbV8ZN2O5yHbWDstda6eyBrrHImPjzrjv9uGZ1kEHl85cRly9QZq974CZwJmYMQsmM+krE+A4L55/s3PoHDOLC9mkIfGExhtjB/WlY84ycVMRVzau0TLf5TJzyY5BR/6olOlcq9V8U43nKL5Xx/+srV3XQReXC3S1zqrElxWA2aTtIDQVvL5EiwOdnygpIL557Vv12LHNzkXnou6IT8QHqz1kTirxbLXZQSZ/dIpTdRys/qD5xutjxm62/C55GvEluw5W8BQC3b34O3z0fPEWa8aHO8cAFcvZayT5We0hNlfUseYQ8dkbg8ocZePm+1g1bjIix5zP1MkkZuR91pfZ+06RquSbVxLobLkr1sEKLhdodqCyCywrXNXkg4gbGygdSSYCmRsrAWR8YoQw41vkYzTWmbnwkqOXNFC64waxER1H2u1ah9H8ZRIzMnasXTSXZWDyzSwGmTFg/I7a7MzTu66DFdxyBY0O5OzY6olHjp3b94SLTb7ouUzAMSBC5pVD+p+NAUYgkXHzkhqSBNAx8MSjQmUtRfVQ3zIimK3T2T+0LJu3opjIkMk3nv/MGq+s5+h8l9DtsA5W8BQCzS7krG/sZFYECrUxO79ykzK2x4o1IoLj8WheMwId9YvtB2sfTe4V2DbR/o9zUB3XbJL06qwSaCTfzOLTy0ns2kB8v0Kgo3qWb5nzFXZZByu4RaDH17P3SBtdWIGILLqZT9GCZDcdbPmxHsssKLvmB/HZOob+zvo2toXOjfe6Y3Fn44bpB9IHqx+Zcc/G5fk1MzdZX6LxmtVn8wFCNt9Y55k5RceVnQuW3dfBCm4T6PN7JPiZ4Po+zg5iNpGMk80k5UwZJvgzY8C2zy6WsU0kWSBjkBEKpAw6vt6iRvuFUhU4rwwbz9mEyfqLCk7Hscge4mfFtgc6PxmBRtc/u9Y68zTjR7ZOZh2s4FaBto7NznuLsSv5sYu3moCYcqvbngXieBxpM+tbJGSIjW6BZhYmm8S/j+0o0OPrKAYy454VaERkuo+xdqpCbtXN5hsvhyIx2BFrzyjQ42s2F3Zwm0CPgsAskvFY10B1JpJsXYTVgREtaKQuagM53rUhYeajO0F3z9nViclr50qBjs7NcgzyM9aJ/IjsIP3JwuSbDl9WCnSVndbBCi4TaGTHFu2m0IXQ5SNiL9pVRX3dTaCZ+ckkQMtGNMYVv9F2vCRvtYMkwM5YReOmMjczn5H5ZNZNtZ7XHktX3Hjvu+cfsR3lUsYm41t2DTPsuA5WcOkVtBBCCCEwJNBCCCHEhkighRBCiA2RQAshhBAbIoEWQgghNuQSgb7ibjfGzlV3GbI2Lrkr8IK+f7c5uysaqZcth961WrlTvBu2zbv6kZlD1peVsVlpuxK/K9e01Sf27nem7c46nXOfubN6h3wcsdyDzC36zCMXo53soHdOxugz61s0BpVHBzJ+Vfo+tt+xKKrjy/rElmPwHuGIHgHxXkd2GL+Q97NzmXFF/MzEfWSX8ZEp1x0z1vpiciRig61/xZr01kpkg4kLzx/GbgdLLFTF1moTPccsbOtclVmARoEfBSVqs8uvCl77qCghSbcroXcmOAYkQVnJgelHZr5Z4ZyVY9ZcV76IbFjnqlTXb7eNzPhWxuuKNdk5xlEcn+1flTf/8WNJowsSnTfR6HEkyWf9O9e1gswLfNTnyHanXxWqguCVyY4va79bOLy+jPbR+ED6MdrK9IO1jfhc7Q9SPrvmM3NvxWHn2srmiMoa8I5/v75qTWbLzOow8zmz1ZUrXT+XNBo4nh3Q8b23IMYyURtV/xB/o3OVBV5dgEwbXtvoD+sbU9Zrv9Of7jhBE8HKcUVseOum21ZULzreteaR86tyycwOkv+sOlHZbL+uWJNIf0a73jnrtVVv/L2aZQKdXdzZxYr6Zb1Hggm1EQWE5cfsPBPkSBnGL8sGAjueTBKo9AOxYZ2L3mdAEwbTTnR85VqKxCHbPlPOG7vsGGfmoDN3zWxE+eLsA9Je9J4RNM/HCCaW0bbZOImOPb1As+ev6HAk+t7gMwstCupOgUYWadYv1IeMrbEsExPZfqDtW+dRgWZj5ey39cP4idisgibLjK2sf9ZayK551icvFiORrKwrZD2gsZUdr7vWZLbOeBwdh0wurPC0Ah0F3SzA0IRbEWjEXpdAZ/rG+IXUtZgFtTfvaFLNji8bK2i9qO8eUXxa5TN+sX1A7Fl1vPdd/Zm1M7OZXfPZMfbsV+Nl5hdiI5qDzPu71iRS3+qj17fxNdvvVSwT6GxwR+0yx6NybHvshFgLKZr8KPi9AEL7gfg1q4OA+hedRxMz0w+07VkZVnwQqgv+qjpoG0gi7vINySXVNc/4hcR9Zw5jBBrNxR05cuWaPNtA2mBEeWbD6g/jb4VlAs2ez04gE0CV4GODJ7MR8YIgSm6MmFX6h9gY2xttovaRZIPUsXxlWdE2suA7NgLVOmgb7MYMbfd8nlkLVwv0zM/q2o3KZtaWdS4zXleuyUjwM0LLvEfms5OnFmhrR2gNIrpougbfm2TU5mpRiPzKEm02Ip8Qfyr9uEvYvDZ3Emh2bVltdws020bXms/GVHfMZASVFejKeK1ck9G8MsKJjCMi7KtZJtDZxZ2p5/nBvu8UZy/5Iok5Opcth/qVBZnj2fHz+Wjus/3IxpLXZhavX1Hco/1A1lTH2rKOs3GZHWMvTqL36BwgMTnzq4usPWYtVnLklWsSjb+oTJSPxvcvIdBCCCGEqCGBFkIIITZEAi2EEEJsiARaCCGE2JB2ga7clFK5wSRTj2l39Q0gTHsrfancLNQ51+zNHhmfO8ZsdYx0jBNig7157Kr1gM5VNRauqsfW7bp5L9OWVScz91eMV+XGsXPZ6g2LnSwR6Gy56G5K71wlwaBBzdQ5J5ZqgM3aHhPXqk0JMqYzH5CxYspX5xux212uK0Yy7TNkkvpKgZ7NJRNPTGwgecWzxfSjI14RW5ZNpE6UV7Ljwc5NNs5Rfy1fduMSgUYXxvk1O2DZsl7AZQUBTb5ZsZktnhXJOpMg0cWXHduZfXYRson7rhipjhNKNH7o8e4E581BNTd4Y4jOfdb+inWL2vbOz15beXk2Zt5YsvFy5RhdZSPDMoGOkgkjBNYkZ5MWmhyZ/nrHq22dz3vjWU3YmTmy/O9IrlY99DhzbFbm7hjpiptKfc93T9g66Gg7IwJWDkJ+LBtMvYqdmV0PNPcyNroEmu1/RQ8Y365kmUAzx9DAQxId6mOUfGe+ZSa8ukCiOqy9CCZpfb9GkpBlK5OAmP5nF99uMcK2z1ARAysWVvky88vydZxDph9WnVl56xiSrzqFYOY3MmazMlZboz10XJkcgY6jB1pn5brqYKlAM5Ng1R3b8dq+arC72/QWxVguGs+OBMm8tmwifiAJrIqXfLptjXZXtxXZYOOfSWre666+s/MU+WLFaSZ+UYG28lg2P3l9QIXWao8dPyZXRO15fq4U6LHOTuJ8HIsFmjmWHZgrkvyKdrMbjGxyRIMPSSheImI2Suzcse2PbV0l0N1tZmI800dGBNGEO9bNbhiQ/rA+VTYalXhmxhk9HtnK5uBxXJDcVBFopE+z89kcdK6P2r1SyJcJdDRI1sQjdWf10Mlg+lGZ9Io9r8zs9fl9JajGMpXEjiYhdkzZxIUmiwxXxUh1nKJylcTG2GTHYpYv2Nhgfff6xLY5a7sa69H6tvIs0i+rTasOMoaeH1HblbVUzT+evc68H/rY3mAQVExy9MoigtTNqknJCAe6EGd2EF/Q8rNyGWGqlM0IVaafGd+6yQpcpe2MQLM2ZuXY9quClt2YWMcr4pith/qA1M360yHQjF9W+Ww9xPZLCvRMULy6qOhUdloMq9uMAhbZ2SF2Mv54bXkbhUqCjPxEy2V9zNAdI9VxYuww59j4Q85/l7GSObI+sjbR49lx6tgIILaZGGdjKyPQln/jsS6BZsbM8ieqd5U4H8fFAm0di4KBEfXoeIXuRI4sAHbxVn3MCrRXlxFSxL+OcWJ8Y1i9eO+I60pirhAl9agsYwM5l4lhZJ0joH5mBAct072xYNZ8pVwlN9zNEoFGf7w2rHYZeyv6tJKsSHUFlid+7NhG88vGCCrymXHpmNfVcZddS4iNyD5TvotIAKJ5rsQT029vDmb2UL8yc34+johPZg0ibSLjZp27MzdEc3gH928RhBBCCPEPEmghhBBiQyTQQgghxIZIoIUQQogNkUALIYQQG7JcoJm74Ni76Ly78jK22TtiV5XN4N3B2e1PR93OsavGATted9ztuSI+V43VijpXjC9b9oqxyPa7kgOYWLvrLufs3eJIzGfuvl/FNgI9dhpdBNbgRxPBDLRVbgeBjh6H8Bah1U40Jl3izviWbRexwcQoa4NZ4FfGJzr23nk0ZtA6yHitSIys4HYKtJWnqv1k4q0ytpWcmMHSh06dsI5fIcj/2GxvsLDIZoNdSX5o0soO/A4CPWufSfxs4EbnxnLZZMv4Uo0DRgA7hQONxe74ZETSay+ztpiEfkVCZAUmWkuz9rLxgq5bpF9eGSYHdMZ/BXTeOtbunX1daqWayGfnMm13+Rn5HJ1fOcGs4LCvM/3JiA1rKxsHTF8qsdYhQN3xafXP6/fsdTRO2Tp3rBnk+Pmc1R/UJpuX2Jhk1tnMLzY2rxCsO3UimxOqXCrQlUHwFhO7mFkBQCafSVZefxhQMasm3pndzmNdttA4qAhwRjhYIVgdn5Yoev6xtr066BisAp2z/9q32h3BdRX2/k+999deVVEA20Cne8aWVjvNBxACdkfqIHnq8gySU8QvywFPGxOxMf3QBVrntz1oXpB8v4E1Lww5IyTDJEQhRMUmQzzbF4wU6bmeuaNqTVboT19KnEqMbJwqJmN5qz4zv9X9dMW28v2mAKhiltmo/LHxRXtZPkHvkuFblpMn7u18qbiNs7YQPz/xIvLnz5JAK+RfkUSHCKt5tbE2BFq9+AmSRXOtCJ8i0BkpVphq1M19Uy8QbH1WRIPmHbmXiT3VODo/AbUWWZI/57cEuoph4jxMz2dAXig2deInMB5FRMQIIZw/R/Yim2oDoAXGxt2Ji8WtmRnCRBueGUcaKkMmMM+flTpg779Ta6ed2//euqsAABGZSURBVDkYn1Ge0Pqs7hrp4SjG7AzKHia/t7Nk69T+RP0hcSP3GeUJjSNan93JLfbueZA4EbA9oPJDZeMNrHmpLirbdxYPsxeNTW3ALukhsbKXjzTwuVYlQjRv5xiat2icaXIlfyyYPVFOqztC/Cr1ydRKBlYkKlS9zvAH6oudRwQgikkRhswv4wMVNbQ3We6YELXM17ROVHn4VQKNFpLiM1rTbUCWnCbPcMZ27ouKF/WlEGRFAGec2T10c/kFga4IK7LxRn12BFrpAZZMWfJH4mbXMPnv+ELn1FwgcSlii8S8AaWOMxvZmg5HTeETAp2tmXwzqgq+QwLTosEiEurItyocnT2RuDB+1Fgm16t7Khtv1adCxMhdKffL1NpkD2X5ZcSJIXv2Phkxyvo/ilPZ0znPFLK6muCPc81PnfPPnxcEmrnIcxxtBiVpHRKoiEu1q6IiFDTe7F6y9Yo438YrskIIjVmjEnSnQdH9m/WpCOvNR0dwEP+bpDiV/27vq3NoTNnPCkdPxawg0odNnYjs/fMCbRiGYRiGDgu0YRiGYXwQFmjDMAzD+CAs0IZhGIbxQVigDcMwDOODWBfoiS+r2X3oV4bo13mdL35vz+xXkMqXopUv5WtUBEp+p9ZsfVHb/WoVufcOlB6ravn2xW/3C9/bPOJH/Tq8grJv8+t71b8ak+qvWrv9Ff4bOhHNv/X19v/9veKE/HMB9IJPMkGJEPkzhCx+5rN+xC9r55xDCJaJrQs2v8y6bB7dx9xXlFuGcJC7UMUJ9TExrtwlMjdBhBtiq+7ZIvaox5m6V+pro7aqeLK4zngqjUD/dc+zgXFvSkKyQlMaIkvuxGUh/tBCyeajuU4O0HgVqPk9/bNNHc1l50PrL4qBiW+jvrLYmftl7z2rQXQ/Yn+LdJW6ZPco50aB3ne0lolnu7bUus/iYXgvs9/h4km8+zoQQCmkrFmy5DLxVL4QwlWLPMpJVixsfF3Sqc7ArEPjV/OUxYHYyNYhZ8vQEQGGoFCfnbVT+5QzsVDsMnsm+6vDd0pN3tZM1xb7fNpm9jBQOGYLKx46glHtj3ydts6f0fii9ezzrYGyuCIb1TpmjLWrYjq/1VomnyqRnetR0qnOE8WK2mRJIzvrOR+dPYuzEiDk/liiVmsN4YrKV7Qu89tBlpspXt2urefz1B2ydc308BucGWHfA4AsyWgBooRbxYDMoYWbkXoUc7SXtYmIzs3OFtCmzdbe5thaydZO5TZaj+5BiIrtFXRtlJcugSJxKWStACX1bC+7Bt2X5bTijowfz3mUV5H16FqWR5n6Qu8S5cPKH+JrAiseWMJRCgm5JDSByKWqBFrFnvm47e+OR7EgOVOJkt2DxKDm6fZcnX0qt5mPzF+2BiVAhXQUombjyOxkUDgG/dfZk52/qusqH8w93cbRe3yjttTnKPdK3zN+buuVumWx7wGAWkjV2ESTZvFm81EBoedAi4It2GgOJYiKZNT8dskvO1v1vJHb2zr23FEekNijscxGZpvpEyTX2TzbjwoU2ygxs+dH1mTzVc0z/f5Wbf19ZnmiipHNXRQX8rxRlydWPLCJVwupIjAkgcwatPAiGyjpZjaZ8WwtW5TVeASliNHmz9ZmNcY2HLOeJcHMLlNXKBSyVs+BzrEE+ndMIfenPZUnmN7p9mW2rjqHwqtKPJG/ys8UB3XuURHsanwSawKtzGcXXIkKmlQ21iquzM6tibK1SFxVM1UEe4uFJTYGXxNoZk1EcIhAZwSqCvsNrABk8SJzWT9WfjJCRHOTjSHzSp4z7mFzWvmqYkBFpYqnc4/sWrVHlZqciOVXCHT177YnsoX4uu1hxBeZZwqmEsWbHUQoM3GN4lLEagobAs3mKbKJ3hFD6gjpMLUSranGlTGUmDIwvXfzw/AFwzFKnp/PmTDcbG6SN8N3k7zK+Oj2X7UHEeqbHYVX/5MCzcxXhByNs5dz288mGb08ZF9WOChJ39Z3Cn8KaH4Qor0RZRR31VBZ/isRZPPaIccKCqGc6zO7z/9RIYzugomvIwrMPLrmuVapD/b8bByKGDFzG7WF+L/ZQXms8rPNxZN4x4thGIZhGBQs0IZhGIbxQVigDcMwDOODsEAbhmEYxgcxLtDVBwbqhyLIOvQjBMZHF+iHQ127qG3mYwglBmVNFQtTK8zHL5UtxB+zDv0whumX6PyT9d+pky/1MpJj5OOkL2CiVqIxNZ63wJwvm1M06O1aeO0r7g3yP9cppM4UN9oMKhGwUPKsEjrqv7vmjEc9D+Or2seIRbam86LBCnQ0p9TdT7xsbPYyeg5mzbl+s++rmH5CoJ+2kHN3OPKNOkFifQPrXpDDTQiacrlvgBUQ1Qd7/gnyiOwzd1mNI/5/ihCimNAYslwidYP2UXUeJC4mZ+i9ZfNbvdy9/8hO5XMaFRei42/wIeLjWWeMrZMzojVsXG/kBcErUbANPOGnS7STsfwEKvLO1mb7UFKr7CrxI/a7sSBkrAgtsk71c/OBko/yYlBBrRc0RmQesVs9Z7Ez/r8k0Gf+f5IHJ2ue3aP4Qs81iXEvDGnd9jGXlRUbUsCILySuiHSYgmCANFrWpMgYGkO1Bo0JyX3kn70T5j7QM2TrkZwrz7ccIOsZYkJ6oTpbNf9WL0e+q9hvsaDxIfMKVC66/dyND+1RJCa0hjMbSGxVLGo9TmPFE9I0U4dkk8iQMeJTXT9x/ohc0LOrd1L5ieaQvCMxnP67jcTUgyI+SGyKcNxsdsia8Zuh6nu2DiZ7WYntTYFmuVGp8eo8KjqC26kT9g6j+KL5bQ3LsCrQ7B71stB96KUgsTLzrFh14qhE82ZfJQT2DOgdojEhTcScBwFy91kM0fm6wnE+I7mubNxsKnGh82/0MnPe29jNr3pexA+zp1pTxR6dnY2FsY/MZevQmo/i7GrBNtYFWiVO1dft52wPMq74QQo/2tct1syfQqiVv8oPKlrZ/iweVpgUIZwQzSjm7GzZfCa2yN1Ud4HEgcSG9v8bvfxfEGi1jm92kZpR+SE7h9KPWc1n3BLZquKrYn0Drwh0Nv8c+2pTV7aZBkUud6KhqzOyosM0XzSHNusZJ+IDWY/G09nD3sP5rNTzc010n6jdisAVourW81QvK6IQxcLcDVuTEzXM1p3iA1mn2md8spyh3rkSXxdrAp0lSzkwIjiovY2izsZYEkExZb8Szsp/x/c5fr5AMPbYpvmXBDqyhYhw5nuDqNSXjZ/o5WpeuSfWp4qJ/pt+uVDss32s1jxbV6yGbWBNoJ8/VySQrav2nP7Y+KpxdYwhJAWTZ1fj2BZoxl4k7Bm2BLqq29MOKoK3vkJsor6r54m+rO53s5cR+4xAV3eM+lTQPQdqh42nwyVVLpWar2r0tu/cg9b9Bta9dEQvm4+SyhDIbW8FtSEnL3ny7NFY5R9pJjS2SFy7QpCREnqP6L8zpuxZ8YugUwOZzWyf0peV3c1eZmriVovRHBL7RO9nZ7jFiazvQrm/LBdMjtjcKj0xwZkq3vFiGIZhGAYFC7RhGIZhfBAWaMMwDMP4ICzQhmEYhvFBWKANwzAM44NYE2jlK8psDfpFHwrmS0fWdnd/9nXylA92r3InWY63883a7dROd93EfrRmJvqsA+UrZqX3N+6zY6NTM299MTyBKe5+gy/RWCZts1j12hFBlMwZ0p+MjfmTCbaAOgXXIYrOS1U2d55n+mWLRbcBFbL9Us2wfZb92Uz0ZzLR3iquyh4b12mP3TNxZtRGdNbpF4it3lJ4Ilqj9mNVK+fPaDxsTFNY8ag09ERBK8SpjDPFxBYe0ujVPEomKkFF/rO4nuMI3m4GlRDQNV+omU6fof7ZMdV+taYjFoq9KR6K7q0DNLZK3Kq9LE8gfhE/qE6oPDTRIype8cIQDLtOIRq2IM6fu2SANMlUcyJQxIIVkWrPhnAwmBTor9ZMt8+Y9Z11556sBpQ6vK1VeuD5M5JztkcUQYlsVrZQ8URri6l7lY+r/dm6bj7fwoonlWi7QquIBGLzjAEhDcQPsk8lvykyRs+W5S3LnRqXgswvU2tVo3+9Ztg+q+wq/czkB8l3ZaM6k8pJ1X50zW2e8VHZPXOE+M9iQtZ17DHrWd6v7iqrP9TfFNY9TZAqOo5eNtp0kW2maFEijHwjhKPmCCHP7KxoTpQaUBtxy7Z6/8qeN2omi5Vdp5K4Yr+yzRBxJzZEPKfECD3/Btd2BBr9meEgZH4CyF28gXFvFekzxMEmo7teKT7F70RM5zxTUEzuq3tjRILJExM3S05sTpT7/3LNVPvZfWg+WYG6jU+KFUvszEsS6yMT/MrGlEB1BVrhCdZX9pJU2Weg8uY01jyiYvd3TBX1yRcAxH7kUzmTGlN1ns4eVliQfWwjMbXzd/wnBfoc+2rNdPrsZqfyV/mMzoHU0m3PLa5sDMkBMn+LUc0z2yvsWtRONKbWIMJNSp+htlko8W9gxVvVaMghlURsknS2TrHFFDpLngyqIu80KEJmiK1qHLF5W4sQG3q37Jm+UjNs3pi4M99MnU0JUAS1759jk32J9ty5ppubTYFWxlGBzn5Wkdl7U6THPaEHmxYadg9LkDehUW1l851iUMgiEk/mrNW6p62qBhQxUV5KJvLM+Pl6zWTzishXtYi+VDB5u9lge0F9mUHnUB/bLyWZ72zsKwJ9qxGU/xCw9buFVS9vkKCyhy2S6hzZvuwfEgNypihG5Q309n83bpRsVYFioYgjs/ZfqBllLWrjJkiscCK2b76q/WdciM9zD3K/io/OPXaR3QtyZ2qtRmPoWpT3GEwKfRdrEagkiDYwQmYoUbKEofi52UHGkaZA4mX8PPeoDXEK/Ln+Np7Fv9EsihAqsXypZm4xKWD6lBmP1rC9nOWY8c2Ik+rjdpbT1mYfTKDLE+c6RZyrcQRoTb11D9+8bcMwDMP45bBAG4ZhGMYHYYE2DMMwjA/CAm0YhmEYH4QF2jAMwzA+iFf/zErZw9iY8JetU77mU7+wRfZkX0cjXyQjY0icTA43kJ196otLxAeT78kvTc8xJja2Dqovj7/6lbFh/ItY6aaIGLaJDBFLlWRZoXsrBzeRVEk0G7/FXPmp7Gz9ucJmHWz7UV+u0Hii+J7zjB22BgzDwPFqR20LR0WwmX8kNobEb6RX+e+IBpODCXHYEDQFE2LLCFPXR/R8G1eFGI3hOYb67ebaMAwca79B3543BJp5vo2jvwFMvDw810+QebQGfRHJ4qnsoXnLfE/g9gKUjT33sSKj1ptynts5qhevam32Mnauu/n5yXs2jN+ItU7KiJwR52y+S5job05/1yi/NWVk2kVGqqhvVowY4lZEcALqC011pk69oUKH5jUaU+dY/2/ep2H8Vox3FELI7Nt/te+0cZu/xViNdXDGE/1/+mcFjX3ZQQk5u6MsXjQOZB5FVCdV3pRcKy8cjAgq9s4zI3NZ7JmtCOhLkUXcMHC82i3KbxHZ2kpcFBG+kRUrnqzoVWerxtjYEFGt/CN3qQr020SO+qruL7uf2zo1x5UIR3eMviiwAo2KM7PeMIwlgUYIYlKgGQKM4mNEARV5RjgRH52xaK4jHqjYo7GcthGoL1DK/ajPt3HkpUa5G3RO8dOpawu0YfBYE+jbM9KkjOB0BIC1VxF8BZaUVDGuYmJffs5n9i4nX1BQMHuZPE+IUxXfWwIdnQ1ZH8WLrLU4GwaO1wVaIeYvCjSCjqijv3VlxNoRiwmBVqG8zCgvAre5zksDksvKJxp3NJadn/Gj1LhhGLNYE+iKIKJ9E+PIPpbIb/9X6IgY6yPydZ6LPXP0M5I/JLYJRPGhftSXJnS+qh82P6qgqi9jik3DMPp4/TdoZk9FmogAs/uYuCJxQn6jU8+GgM3z+TxBzF0RYpAJdPTikL1UsL9VKvWG1kE3NmRfdh/qmQ3D6MPdZRiGYRgfhAXaMAzDMD4IC7RhGIZhfBAWaMMwDMP4ICzQhmEYhvFBWKANwzAM44OwQBuGYRjGB2GBNgzDMIwP4n9G4JIuLJEEWAAAAABJRU5ErkJggg==" style="border: none; font-family: "Microsoft YaHei"; font-size: 14px; text-align: center; text-indent: 28px; white-space: normal; background-color: rgb(255, 255, 255);"/>

  以上是《2019年西师大版数学教案:<10的认识>教案(三)》的内容,更多西师大版小学教学教案请关注新东方在线小学网。


英语+新概念学习资料大礼包

微信扫一扫 自动获取网盘链接

更多资料
更多>>
更多内容

小学英语资料大礼包合集

扫描下方二维码自动领取

更多>>
更多英语课程>>
更多>>
更多资料