2019年新课标版三年级上册数学教案:《分数初步认识(四)》

2019-09-02 17:43:00来源:网络


  

\BECANAESEMAEWEMAAUEcIAUEQIA0ARIQwARcpC+PgP11/9D9lfsf3X6xX+2d23zPHbve9n24suu1vk+ANU+agQPgu2XUG3K1BnzPTtvV5m33v7E93n6Gd3R/hHywti4IkeH8Kj4IkEUTSsRn3sbbcXXjtmwtl9mA3UXhtnfciEemT/Mut72271BeBJPiKEM79n2xnVi/St9fqsD9nZ9tn+RkMuGpqtvkb3d7TPvf5lQzjyXggDT/dRIdyaZUYCOPJoMhKOmVCKBlJ0dhqdyfbqjUK2t8/REM7MriPrI9tbDXmACiUjU2Qwb5VtzQiPdbIzpV5/IiEbCa9eX3rvj22NyrbqjG4qWtvNhvDo9ai96LrWMTmWEcDAUz0ihHuDaSSEW3XPthMtM5r9ttq+YyacmaX3Xrfa6vXhbHu9UF/9fCIBK4SBT/VRIdybZV4RwtHXMyEcDdPItrL71QvuXn+yM+Fev3t9nFneKyeEgaf6iBDuBcFTZsKR8Gr1JToTfm/ruCwiE0aZmXCkjZnPZzTDzWwf4IluH7lmA6n3OxuwkTLZ1yttR9b3bghGwTfT/+i6p4ewmTDwZI8P4da6K2aBkcfE0ce3rTqzfTuWzc6eM+v+lrf6PzoGvX6P2oqU79VrlQF4oltHp5VZ09nA39tGZJtXlcnWyYZw5LidHeuzsGwFarT9yE3VFccM4BsY6QCgiBAGgCJCGACKCGEAKCKEAaCIEAaAIkIYAIoIYQAoIoQBoIgQBoAiQhgAighhACgihAGgiBAGgCJCGACKlIfwVf9u7OjfJN7VRvRnR1sVIv8W8uwxyPy7xCtmt73ap+y/eZ3dbu/17nbuqr9rH3Zfc1ceZ35bydl0xwnd+gfse8FwV5jOhNbxmF3Vv7P+7qgTWTYKrdnPpzqEZ+rObLfiJjPaz9H2Z+pEr5dZQpg7fGUIn23/ijZ74X4M/2h/I2Xungmt9C+y3asG+Va5SDvRQO9tM7M/M/uc6XfW7hDrrY/cYEa3nTlnI31rbUsQs0tZCM8OvE8yCvjIgBANuFao3zHbimx7NJCelc/OYEZlR2Hb2v6uEI6WHZWLHoOrwiFyc5S9MRu1Eynf2m72msu2IYS50u1nUnZwfy+XOfFXZiWZNt5/t15HZmKj/kWC94pZUGT7uwbTSN1ef2b7t3LDkV0W2V5vP3bd2GX7NXPdZkI4Ow60rpcdIXz3cea33XoWrQ5UqxfWTLuRbUYHhrO2o4F3RwiPwv+sTOYGo1WmVa/Vx9HrXp3odmY+016ZTCBFyvX6uEv0HOzVjXwuo2Me6d/OED7b9pXHmd9WfiZddTL3BtHRIB8tPxpsoyHcCqqzfkX7GNn/yGAy8/lE64zC8cp23tdlAjxzc5ANrZnPI9O/zPFaPXdmQrhXJrqudeyz+zN7nCGr5EyaDYRsG733O9tYDeHI68yAvlOkrZnBurVu5uYo0lZv364O4dVgzZTdEcLH7WRvlrLHrHd+tJa3PvfoMR8Rwtyl/EzK3p1ntrtyJx9tY9TWe7ljvbO6Z2XO6twlGsIz76PHb6Vv79tv1Y0Ea6Zs5HVvm1eE8Gjdle1EbqyOy2b6+L5MCPMpys+kq0L4uP3s3Xxm29lyMwP2bGisiobwzM3O1ce/Fb7ZmVqmbG9WtjuEZ28SImZvYmeOZfb4jJaP1kXMHmfIKj+TrjyZr76QogNVKwiydUb9rgrhSJ3MIBydzeza3x1hFpk5jUIjcqP5lHCYaXt2fW955HqZ8ZTjzPe79UyaDa3Zdo7LRuuv6tvMADHb390iA+fqrKkqhEf9OpabDeDR8ozWsbnq8z9rYyWUZs+nSB+OZVZUHmd+i7MJAIoIYQAoIoQBoIgQBoAiQhgAighhACgihAGgiBAGgCJCGACKCGEAKCKEAaCIEAaAIkIYAIoIYQAoIoQBoIgQBoAi5SF85T+Q3fvH1kf/KPiV/QCAf/+KQjgahrvbOP6O1j3+9NYdy0Tay+4PAN/hK0O4FYpnAdmrEw3U3jZ760f1R2329geA5ysL4Wjo7W639/5seTaUezPwVlvZEL5ipg3A/W4fvWcDJBvQ0UfIvXqj/o5uJHbMhCMzbyEM8JluHb0zj3LPymVDeKaN4+/oTH3Xd9DRddFtA/Bc5SP4lX+YNZrVtvrRC/BICB+XzYZw5DG2EAb4XI/7TnhnG8fX0dlx9Dvhqx9HR5cLYoDPVD563/mdcPYR7uzj7+OymRDOPKIWwgCfqXz0vvM74bOZ7Fmd6KPpVnuZda31Qhjg+5WP3ld+J3x8PQqv3sx1NKvtPVbPfrcbOSa+Ewb4fLf/dXT0Z0db7222+nAs3+vrsVykvzP7I1gBfoPRHgCKCGEAKCKEAaCIEAaAIkIYAIoIYQAoIoQBoIgQBoAiQhgAighhACgihAGgiBAGgCJCGACKCGEAKCKEAaCIEAaAIkIYAIoIYQAoIoQBoIgQBoAiQhgAighhACgihAGgiBAGgCJCGACKCGEAKCKEAaCIEAaAIkIYAIoIYQAoIoQBoEhJCL9er+bP7HZ29m3U1966mf2a6f9ZP3duP9P2XXZ/1gDVykI4s/xv3Upgr/YtUnZmv6Lrz/b9+Duy/dmbikx/I2ZuuHa2D/AEHzMTvnrg7QVdL7RG9SN9j+xbNHB7/YkG6uhmYsdNRa+/rXWt9wCf6qNmwldqzS57oXUM6lG59/fZx9dn/Zq5gcmGcmt/e21lQzjyXggD3+jWkSwSPqPZ0MwsOtq31u/oDHcm2CLvM9se1RuFbO/Y7pgJR2beqyEP8CluH816IRatd4Vs0PyV6YXjrlDu9SsSeL0bilb93gx4dwhHywhg4NuUhPDZDCsTCtk2IrPnnTPhUd9XZ8KZ/em9brXV60Ovzsw2M2WEMPBtHjMTHg3wo9nc6uDcC+FW/6JhM5olR/ZlZiZ8VmYU3L3+XB3CkfVCGPgmj5gJ/y1//31WL7J+pV/H/p31t3cTsRLKvfdn/Tsui8gco90z4dUABvhG5TPh7MzyqhBubSc7Ez4L410zwB03LpFjubKutX5le+/lhDXwTW4d0SKzytEAftXj6LO2In2O/mTajJTNzp4z6/6Wt/o/CtTozVWrrVGfAL5F6YgWCZRoAFw9E470LbrN7Ppj2ZknBq2ga91UzLTfqwPAfxkdAaCIEAaAIkIYAIoIYQAoIoQBoIgQBoAiQhgAighhACgihAGgiBAGgCJCGACKCGEAKCKEAaCIEAaAIkIYAIoIYQAocnsIn/0D75F/9H70s6utO2X3571e732mbqZPoz6+L4v28emf0b9/7WMyKg8wUjJSZAfe0YCe2d7uwXFle9lgagXBSoDP9jOy7L1/mb5Uf0bRoB0tF8TASOkoEZ1lzbxvbW9nYI3CcmR2Zn8M32x/o32b3W5kv6o+o0zAZmf2rf0AaHncCJGZBWZDOzKQHtvM9DWz/d763vLWTHjU3krfIjcJ0c9i1J8rP6Ns34QwcLVbR4jWrOdY5qze6vvIdjPrZ/p5Vj4zEz7WmelrZIabCfdRHzIhfPVndHUIH9cLYGCkZJSIzoJG5WfeR0Iosj4ywO4ehFvh2JtFZm9QWut7Nwqt2XnvxuIJn1E2hKM3SwIYiHpECLeWva8b/YzKn7W1OkjP1I3uTy8cV2doWVfNhCs/o0h4r7QthIGIR4RwdNBr1Y9uP9veFQP8bJ2Z4J7t20wb0Rlva/mdn1F0m0IYuFp5CEcG7ZmZ8GibveWjvmTrRMpmwzTbVqZO9ngeQys7s+/1a/dnlL0JOb4/LgdYURrCV800nzzAt8rPPAW4KrhnZ9uzNyC9ujs/o+wxNhMGrnb7SLFjFhEZHFdDIzJ7m233fVvZ4zET3K36K3V6y0a//17f/RnN3LT0CGFg1a0jxdnsJ/LYMvrTa+es3dX+z7rrOMzsw0o72RCOHJOsO8JPyAK7GEkAoIgQBoAiQhgAighhACgihAGgiBAGgCJCGACKCGEAKCKEAaCIEAaAIkIYAIoIYQAoIoQBoIgQBoAiQhgAighhAChSHsJP+8fRM/+IfWU7kXK9NrL7lN3/TDu79qXV1vuy4/pW26PtAOxQMqr0BsVd298xYEeWr/RxpZ1ocGXfzx6blRuW2WMb7WNrv7OfwV3nAPA7vjKEI+32ynzTTDjz/mzdTB+vDOHMuXMM28gxz6xb2afWzcIV5xrwXGUhfFfYHdudLfOpM+HZY50J7Jm+7dh29MnG2bro8W/NmkfHLhvCK8cb+Fy3X+mzg81qQGfbeeJMuDULzAbK7norYd+r3+pXKxh7248s6+1btH5kfWR7Qhh+w61X+sxg9l5udmB6r/vJg1sveGcG9kgQzdyMXDETzgR/q0xkf3rvIzc+kfVXHEPgM5Vf6VcPNmfhO3psmZ3VZW4QZtuZCdTZGers7C9bbrZ8tl52Jhz5HGZDWAAD7x73nfDuds5en70f1R+VW+n77Ewws51oG5EAHs2Us5/tzhuY6D5FQ/LuEBbA8FvKr/grgi466EbCZneQzLSzq++Z4DpuJ7OfV82EZ58OvP8eHYPZsI6sF8DAUflV/6TZ5rHcbDhc1c5sm9mbh5VHqZlyM9udmW2vHKu7QlgAw28qv/LvGnwyM7joI8fVvqy0sysQs7PsyplwpF6k773jvyPYIzPsXp3VG07gc9x6pa88It3Rdmb9VX1bbSfaj9ltvC9vldvVt8x5sHLuZEO4t6+z54BQBc4YGQCgiBAGgCJCGACKCGEAKCKEAaCIEAaAIkIYAIoIYQAoIoQBoIgQBoAiQhgAighhACgihAGgiBAGgCJCGACKlIewf2cVgF9VkoC9f0T9btXtA/C7vjqER9s+W/96vf73AwBXKgvh3s/ONkZlMu8BYKfbU2Y26GYCule+NQue6RsAzLg1ZSLB16srhAH4JuUpU/GdcGS574UBuNrjvhPe3U5m+XvfRuUAYFV5ytz9ODqzDSEMwJXKU+ZJIfyk/34ZgO9XnjRXhd3ZI+7If7Lku2AA7nL7X0dHf65qHwCeQioBQBEhDABFhDAAFBHCAFBECANAESEMAEWEMAAUEcIAUEQIA0ARIQwARYQwABQRwgBQRAgDQBEhDABFhDAAFBHCAFBECANAESEMAEWEMAAUEcIAUEQIA0ARIQwARYQwABQRwgBQRAgDQBEhDABFhDAAFBHCAFBECANAESEMAEWEMAAU+dgQfr3mu/56vf73s6uds3Iz27+qDgDP81Gj93vYjILnWDYTvK3tZMvsDtS/da3fAHyWW0fvYxiuBOJsOO4O4d4+jfZ1NrzNhAG+w+0hvFq/97OjD6M2RgHYmp2uhnCvLys3NgDU+ZgQnp397QrVzPtI4GZnu63tZ58OAPAcpY+jM/UiyyLrVx/1Zt6PXo9uDHqz7Nb2APgcpTPhnTPjaJkrQjgys+61m310fdymEAb4TKWj9swfSc18H5ypd9Xj69UQ7q0TwgCf6atnwn/lsn8AtfP9zPLozcGxvBAG+CyPCeEd3xO3ysx+Pxwpc1cIH5fvvKEBoMbtI3fvse7OED4L+Oxj7Gg7kW3Ohm2rvbPyghjgs3zEqB35njYbgL3lmTLRP9yK1BvtQ+QRtCAG+BxGbAAoIoQBoIgQBoAiQhgAighhACgihAGgiBAGgCJCGACKCGEAKCKEAaCIEAaAIkIYAIoIYQAoIoQBoIgQBoAiQhgAighhACgihAGgiBAGgCJCGACKCGEAKCKEAaCIEAaAIkIYAIoIYQAoIoQBoIgQBoAiQhgAighhACgihAGgiBAGgCIfEcKv1+s/799/InVGy2fKHvvR+3mqyD6ubPvK/T87L6Jld29/pc6KHfs1KnNWfuZYZMrtPi+ffA3y2x51ZkYH0dEA0Vs3Kp8J0+iAu2MAyIb97D4cl2UGwytvPFr7cfw908/o5xY517L9WnXljeLqNbcS1FfcHL5/JlfdKAt7sh5zxszOUK+4I54J11Egrpod0EZ9Xw3hbLsrssG260Yksry1fudxmAnUzLFaaae1nez+tNaN6kbq9Pq1+3OCqMecLdUhvDLAjQb2qhCO9CkywM3MGO4I4UzfojdMZ+VHy3vHaebYZUTPi8xnuvIZr7TTOidnyglhPsUjzpbRBXMc1FplWnWibfXWR7aVGdSyg3JkljAKmrPjmAnuUf92hHe0jUwfR+fQzPZ67ZyVu2pgvnLAz36Wq8cxcs32junoWuj1a/dxFMREPeJMid7Nz243M5islI2ue1+f3Zfo61Hds0C6+qZlVTREe3VGn230nGn1obe9HWZvdnbdHGU+75kQHr2eqR/ZXvTGKkoIE/WIMyUTwit35pG2VrYVuZOftSuEj8tmj0d0+6N62RuRTAhFj1MkxHtlIzc5uwf5Xn8y5WZvBHeUH13HrRvF7Gcf3Uav/7v3Hf484kzJDvTRQXQ2hGcu0t7yK0I4Ejq9/eiFQ+YYrNSbCeGzPs+cP9H9WgnsXp+PfZmVudmJfj7Rm53Vc2d0bCPHrvV+xzUohLnDY86UyAB/9j4yKM5eTJk+jcLmbNnOvvTKzIRDpt2/cpn2s9t/Lxu9mdjVXmTZ6MZoxzGYDcfs+5U+ZupE+xE9f3eH8F89AcyVHnO2RC7Y7IWVrbPjwo62WR3C0e1m2s22n93/mZDLfqaj/kX2ZeacmxX9fDKhvaufd4Tw++vRjcjMOTBDCJPxqLMlM1jNzjCyIdxbNzszmbHSTmaWdFY3uv7K/T9rM3qzs7Iuuvxv3cx5umImQLPnQLRMtk7m/I28j94IZceFDAFM1sedMZG73FH9yPLWADFzB70rhDNlIgF4NjtYDfvZvmdE+zDzmY7qRfqTuUlYFT0vZm8SozdSM+dO9Lhn93fUz5l1cBVnHQAUEcIAUEQIA0ARIQwARYQwABQRwgBQRAgDQBEhDABFhDAAFBHCAFBECANAESEMAEWEMAAUEcIAUEQIA0ARIQwARYQwABQRwgBQRAgDQBEhDABFhDAAFBHCAFBECANAESEMAEWEMAAUEcIAUEQIA0ARIQwARYQwABQRwgBQRAgDQJGfCeHXK7arZ+Vadd+Xv16v5s9oe6P3AHynW0f7XlD1QmtX27PlenX/1h0DeVQ3Wx6A71M64t8ZOJG2Zme2mfLRGxFhDPD9hPDJ+pnHw9GZ7cqMHIDv8tUhnHnkm/kO91jnWH/nzBmA73X7iH/nI9iZGenokXSv/Gjb2fYB+G5lI/5MeGUCauYvkGcCcPb7XSEMwEeFcLTMWblRe2ehefVM2ONogN/2kSE8M2PeMfOObGMmTAUvwG8qGf1XH8XOPjaOlnufCY+2cVa+Vf9Yx2wY4Ld9ZAjvbPN9fW9WO3oc3fojsNmZOwDf75H/x6ydobSyzehfVI/qtfpjNgzw24z0AFBECANAESEMAEWEMAAUEcIAUEQIA0ARIQwARYQwABQRwgBQRAgDQBEhDABFhDAAFBHCAFBECANAESEMAEWEMAAUEcIAUEQIA0ARIQwARYQwABQRwgBQRAgDQBEhDABFhDAAFBHCAFBECANAESEMAEWEMAAUEcIAUEQIA0CR20P49fpvk2fLInVb9d6Xv16v5s9Of9ub3ZfZ8r3t7N7HK0Q/04o6M644t4DvVTJazAZxZiA9C8XW6x1WQvi9bu8mYea4tbbda2P002vrWK5Vr3W8Ip/Rynkw+pxG+xD9fAQxEFE6UkQG+kgo9MLhjplwpL+tPr3XnxnEV8rNHIPsvozCNnIsIn2O3oxktpNpq3XeAvQ8bpSIzGoiZc/KXDVTGW23t2y1f3eGcGQ/ZkL4uDxzDoz61roh6t30ZV63+i2EgYhbR4nRoHf2fqWdY5tXzITPZnHvr3szx+gssNfn0ROAXrnMMRiF3yjsevVa7WTPjZljEWl/ph8CGIgoGSmis6K/ZZGfURutZStG/Y7UjW5vpp1dIRxpo/d7tK+jG5lW+d6NTKteq98zbbaOhwAGoh4Rwq1lK3VXwjs7iPYG92jfWtvp7WcmtDNBMmq314fR72NfWtsc9S8yO418LpEQPutbr19CGIh6RAiPwqRXd3XZWZmdIXz2OrL/u0N4RTSEezcWu4MpEsK9dTMhHNkXIQxklIdwZjBtrY8GVnSAvDKEj32ZmQlHA+6uEO6FbvaJQOQzypwDre32QrhXvtUWwIzSEJ4Jj9ageVYuG1qjdaM60UG7N8PqhVArsFv93hUk0Zlw6/fVs+BeH7M3fNGg7vVNSANRt48Wq48no/UiwXjlTDE6e+wFa2+bs4ES7eNqudXPOduXbDDOHPPZtgBabh0tIo9lR4PYygB31eAYnZ33yp8tj9afXR5ZFw2V1g1O9DFx5DzonT+9/h/rZ2a2o20CrDCaAEARIQwARYQwABQRwgBQRAgDQBEhDABFhDAAFBHCAFBECANAESEMAEWEMAAUEcIAUEQIA0ARIQwARYQwABQRwgBQRAgDQBEhDABFhDAAFBHCAFBECANAkZIQfr3azb5er+H6yLbOyr3/ZPrV6w8AzCoP4Ug4tur2lp21Myqf3T4ArHhECEfK936uaLNVFwB2uTVdzsJzNRCFMACf6hEz4czsNhLCkaA/ttNrexTCmRk5APy5PTlaATn7nW32+91I/479HN0gCGEAZpSF8Nnr9zLH8pGfs7Z622j1L7IMAFbd/p3w+++zZZFHv9Hlvdm1EAag2iO+Ez77Hak7Wt4K3sgj7MwfcnkcDcCMx4Tw8XWk7mj5WTjOBKoQBuAKpSHcmxGP6r6/jwZzZiY8WgYAq8pCeOb72tG6aHutZTvbBIAR6QIARYQwABQRwgBQRAgDQBEhDABFhDAAFBHCAFBECANAESEMAEWEMAAUEcIAUEQIA0ARIQwARYQwABQRwgBQRAgDQBEhDABFhDAAFBHCAFBECANAESEMAEWEMAAUEcIAUEQIA0ARIQwARYQwABQRwgBQRAgDQBEhDABFhDAAFBHCAFBECANAESEMAEWEMFzo9Tq/xFrLR+uy7UW2NVMH2MPVBhc7C7VR0P2tf71epz/RtiJlW7+B67naoEA06DIBPjPrPlsvhOE+rjYoUB3CvRl2dNYNrHOFwUV6QdYLzPd10brZ2W6kPQEM13OVwcWyoZkN4dH3x63veo/1zpYD13KVwcV64Tcqn/3DrF57vTZ6v4HruMrgYishvLO9aFtCGO7jKoOLZWeaO/874d6y1uxaCMN9XGVwscj3sq3yxzIzf4AVfewdqQPs5UqDi2XDbuavo2eW/63LPi4H9nGVwU12h+fofe+PuKKPoAUxXMsVBgBFhDAAFBHCAFBECANAESEMAEWEMAAUEcIAUEQIA0ARIQwARYQwABQRwgBQRAgDQBEhDABFhDAAFBHCAFBECANAESEMAEWEMAAUEcIAUEQIA0ARIQwARYQwABQRwgBQRAgDQBEhDABFhDAAFBHCAFBECANAESEMAEWEMAAUEcIAUEQIA0ARIQwARR4fwq9XTRevave43bN2drUdaWtnvWP53cfwfXut17vbmakT7dtKvzN1rzzH2GN0zkQ+r5lzIjMmtH6y5Ud1f83jj8Lx5Lzrw9xxckYvpsgFOHMyV4fwTN2Z7V4RwiufazaEZ8/rlYH5CTcuvyh6UzZzI3d1CO9YPiozcy18+rn3+N5HTsyrBpTVu8/RSbbav2y52ZuE0fKVO96ZwMn0O2tmO9m+9c6v1eN87Et0XXT/out3nOffZudne7bNmXFhpp2d+7TLJ59nj+758cO6I4RbA2a0fHRb7/s0Ojln3veOXa/vMxdbtOyoXPRYXhXCo89kdiDcFcKZfci0Ozru2Wsgew39ip2f7fuybMgdz4NI+yvjwh3nwyefY4/veSR4d30AM9tfuQgybc2c1KOLbccNxx0hPLqZyLab6Vf0hifTt7PPZXT+RAfMUd9nPq/sMRfC/xUNul3jyKiNu/oWrTcaR0ftRffjiR7f6ztCOHJizgxgM6GVDeGV9luDfO/kH108mf5F+tvqa+bizOqdC5FjGhlwzn5n2zq2Obsfu0N4psy3mz0G0QCOtJG5hleNbgaz27ii/FM8vtfHwX00yO24o/rbTrR/mXWzIXxF3zJ9z9wczIRw9vPI9C/Th5lzZ/b9aghHPsPMzUBvO5nl2TK/YOY4XBVCmVBsnUORc+uuMXi2/FM8utdnAXtn29FymZMsesMQ3X60rbPlV4fwrgCO9GdHCB+3M3MTlXk/G8LRfcr2I7qd0fLo+l+SDbrMNZ4NuGwIn72fObey5+xK3U/y+F5/Qghn1kWCeWffehdLZnDNhHC0ndG6XrmVgWR3O3eHcNTMjVR0vQDOW/nsdtY5Oy9aAX5lCGfHwl3X+NM8vuezobGz3dkyvZPsyju+Vuq7V9wAAAW2SURBVPiuDMqjsu/b74VMZJujsrM3CdF2sjOS1b6d1W/NZlZmOHeF8GjdJw+YK54cwtmyMyHcWx7t150ZcJfH9/wbQzg7iM/0LWLHSR65GHt1e+HW2u7qDHFF9u49s6y3PLI+M8PJbPNYN3oT2Kr7yQPmqtmgvHLb0c//eKMduTHt3WiO+rB6LX2KR/e+9eFmBu+VtmfX9/o1O1vJlhnVj/YtM3hfeZPUu7O++iKMHodo3zJBOupPZCDsvb9ysCcvOqb1zoHR2JgN4bP3vW1EbroiN92/cp79xl4CwAMJYQAoIoQBoIgQBoAiQhgAighhACgihAGgiBAGgCJCGACKCGEAKCKEAaCIEAaAIkIYAIoIYQAoIoQBoIgQBoAiQhgAighhACgihAGgiBAGgCJCGACKCGEAKCKEAaCIEAaAIkIYAIoIYQAoIoQBoIgQBoAiQhgAighhACgihAGgiBAGgCJCGACKCGFSXq+5U2am3rHOaBtn66PtZvv3Xn72mAAYPb7IrjDobef1ejV/ouXPlkf6MepXdl+y5Vr9jdb9ZU/Y/+o+/Hr7nPOpfIjZWWAv5LLtZAIz005mBjvaz2MfZ28UsjcHM/W+xcy5Ga17ZR9mro9van93H5jjyH+AyEUymp2tzgh7oZkZZN9nwr362RAetZFtJ9qH1b5/uplzM1P3qj7MXh/f0v5x2Teem5/Ckf8Q2bC4+pFp5g66F7zZYDxb35qZRutF+zCacc/0/Rus3MjcMRPedX3sbH+mzM72R+XPnia13s/W4f85Kh/ijos8WiYTer2fszbfl0fr9QbU6N3+sd2emRuHbLlPshIAVSH8vnzXbHx2XUX7vfNdCN/LUfkQo4Fkpm6mXDScZtrKDCDZGep7nR2DYetmwEx4bvnVIRz5zK8MwbtuzmY+gys+B/Ic+Q8xe5FnLq5sCPWCr1f+2NaOEI68n5mt9+74d+zPN8icm5HP8+o+XNGPTwzhne0zz5H/EJEBLbt+ps6uiz0SWtF9jg4orcdj0dDs9X12f75B9tyM3Lzd0Ydo2SvaXym7o30h/ByO/IdYvchW2omsnwnh0SB8ZQhHlo/aawWvEL5vBjjbh+oQ/rb2mefIf4CzwIqE5eyMIzOLGW2/VW5n2Gf6kt2n2RuB7PpPNXNu9ure2Qft+2+En8DR/1BVF87OmXC0jWy4tupH2xuty27/1zzhWFT34dfbJ84nBQBFhDAAFBHCAFBECANAESEMAEWEMAAUEcIAUEQIA0ARIQwARYQwABQRwgBQRAgDQBEhDABFhDAAFBHCAFBECANAESEMAEWEMAAUEcIAUEQIA0ARIQwARYQwABQRwgBQRAgDQBEhDABFhDAAFBHCAFBECANAESEMAEWEMAAUEcIAUEQIA0ARIQwARYQw/LjX63X6urdspsyxbLTO6/Vq/mTLj+rC3ZyJ8CN6wdMK4pk60X5kQnjH8lGZmcAW5qxyBsEPWJ01jmbIM4E6087OfdpFELPC2QM/YGXW2Co3E3LHWfDKo+7I8mOZKwJTCLPC2QNfLhp0M2E608ZdfYvWW3kakNkPOOPMgS83GxCZGeiojdbM94pHxDtmwtm+CGFmOXPgy80ExFUhlAnF1kx018x2x/7Mloc/zhz4ctmgy/zB1Opj25myo22clct+97xSFzKcOfADMiFx5cw5Mmvtle0t75WLhP/sY2wBzApnD/yAJ4dwtuxMCPeWR/uV+Y4copw98COu+qOklW1f9Z3w2e9We7uXQYYzCPj379+/Zqj1ys18j9x7Hynb28bxde+77NH+wR2caQBQRAgDQBEhDABFhDAAFBHCAFBECANAESEMAEWEMAAUEcIAUEQIA0ARIQwARYQwABQRwgBQRAgDQBEhDABFhDAAFBHCAFBECANAESEMAEWEMAAUEcIAUEQIA0ARIQwARYQwABQRwgBQRAgDQJH/A/zkJrqKyuDYAAAAAElFTkSuQmCC" width="481" height="640"/>

  以上是《2019年新课标版三年级上册数学教案:<分数初步认识(四)>》的内容,更多新课标版三年级上册小学教学教案请关注新东方在线小学网


英语+新概念学习资料大礼包

微信扫一扫 自动获取网盘链接

更多资料
更多>>
更多内容

小学英语资料大礼包合集

扫描下方二维码自动领取

更多>>
更多英语课程>>
更多>>
更多资料