(1)想一想:第23个气球在第几组?为什么?
① 小组讨论:可利用彩色小圆片进行排列。(或是列表法)
②引 导学生列出算式:23÷5=4……3(4表示周期数,3表示一个周期里面的第三个)。
③小结:要想准确判断某一气球的位置和颜色,首先要弄清这一排列的周期是几,然后通过计算,知道它在第几周期第几位后,再确定它的颜色。
(2)算一算:这23个气球里面有几个是绿色的?
生:一个周期一个绿色,四个周期就是4个绿色,加上最后一个也是绿色,所以有(4+1)个绿色。
(3)练一练:有几个是黄色的?
生:黄色 的气球应该是(4×2)个。
(4)列一列:生活中有哪些现象是周期问题。
(让学生自主探究,体会多样的解题策略。学生可能运用图示法、列表法及利用余数进行推理等方法解决这样简单的周期性问题。)
三、巩固练习:
练一练:
ACT0uqzZkxEEAQmTRyN0RCDSQD2++5NCIJA69bN0caGgBibDgYYpUV3yOC+VK1qj7/fa2kRSgNyKbWuA7SMHzeCAgUKcP/eRUD/TaAzgbxatSoyBOJ5/OgWvZ2lyLBIkcJs/HUVRoNG3s0ss+eIIzjwPVZWhahXtxYRYV5I2YFMIneSWL1SUvnfvnUhS5Cbnvf8uaOULy/N6f9p9lRpgM5fFMmZoh5llJ8E8l6pIDfq1YjGWLSxIZw5fYiuXTtSqpQNDl07kjdvHkYMH4hJrJfxuVUgxqJW+nHn9gWz4FCaAhhKeOhH+RrUYGpVkjaXiTc/pzY2GPe3j0hKCE+3e1x6+1aQy5F5prvafTm1fvPGaUxzBLTRAbRu2ZSePbqSKDuTXwJ5D8fO1K1bi317tnDgwA4O7N/O4UO76OPSk8r2FfH++BTThkfS8CdThBpLgO9LcubMKU/Fi5GV5abj4rh/9zx58+bhx/HDAT3vXt/FwsKCWTMnSN+/uZsG5NIeAjeuSR0tI0cMkDtRVBh1qVuePnt6AyenLpJep1Z13r66jdRCGi4L1hJ4+/o2ZcuWpnLlChQtWphOHX9AlxQsOyRp19pPInOj1F535pSkWr904SCQwtgx0vwK6+LFsLIqiIWFBfaV7Pj44T4QyZDBfciWPRv58+XF2roY2bJlo3u3DiTG+ZpnrqdvQ4tClxLCj+Ol5126eIY0LExmmNEQgof7HXbuWMObV9cBDT5ZgBxjKBGhLxkzeiDenvcBDZ4f7vLjuCHokvwR9UGpIE+7HakJ5PkL5GPggF7ExXwkXuuFNtojnSXE+6BRutOzR6dMUuufTmqTYH71yiHatW3BnJ9+xNfrAVLhP5a0W/4lJvhz68aftG3TnBHD+6GN9ZZfown46U+aUR8KxHHowBYEQaBtm+YkJwQgGsK+C+Imgdv2rauZM3siqfPF4zKxT6OeeEzipu3b1jBvziQMBhVGc1Se1vOMRRn5gerVKpMtWza51zKjh/qtIBcNCiCOK5f+pNpXzlovXNiKHdvWgaiR0olZbWwi19Keu92ie7eOCIJA9WqVOXRgFynJ4WBUo0+OYOuWdVSsUB5BEGjYsB7Xrp40L6pZbyOqY+gwaaerXbt+zQDyTBdHtKxYPg9BEJjz0xTAIP88Fl/vlzRoUAdBEHDs1onlyxcwcsRgLCwssLYuzqWLf2KKxtOBXJT6Vjt2aEO9erVQK33lzzUW1z5OFC5shT4liosXjhES/IHQEE9q165BxYp2PHp4Q16wEr4Z5K59nOTza0Cv03DyxEEaNarPvj3bEMW4LGvZoGf71vUIgsCPP45CFJMyPRZZN7ByuaTyv33z/GdBbnp9bs9u06BBHW5eP/PF478e5nGolf40b54e5OasiDyeNCVZw+ZNP5uv0xrVq3L82B8kJURm6jSBjvNnj5I3b16WLpkDxBOjCaJtm1Y4OHSUZtCLWoyGaFYsXyB/Zlele9YYw/Jl8ylSpDB3b19AGiL0uTJJGpA/ukquXDmzBPnnI/oYVFHe5MiRg1EjB2P6unr5TywtLXn0MLW8YOrF7uNimk8PD+5fomjRIpmCPDkxDBeXHhQsUIASJayxsiqIlVUhihYtQvHixaherTLeH5/JIJf3PjBti0oCft7PJWHgqgVAonl0M4YoRDGG0aMGkz17dh4/vAgkMXHCKCxzWHLpwiFA5N2bu1gXL8rd22fQ6zW8cLuONtqPCeOHIwiCnLWUavaiLhxEFffvnqd0aRvatmmB18fH8jqrwbSlsFrlyYWzB7C3r2C+LmZMH0+Q/wsMurA067KspJf3LE/bfmYCuRSRawgPeYP729v4eD7C1/cZ48cNpYJdqtjNpXd36terxfNnl/Hzc8Pj/T0CfJ+hTw7CkEabJfWia4lWfWTSxBGSwzK8HzpdsAx8OaOcbBpFHouUEY/Cz+exnFrvLWWkTSAXwwjwe8K0qaPQKN8DiURFvGH8uMEyyIM/D/J8+fIyoL8TGOSNVcTQVCNUOlHGELp1a0dJm+Jp+sg/N3ZVgefHe4wc0Q+Hrm0ZP24IWzYt58D+Tezbs4HFC6fTr29Pejh2YtvWVdIAmXRDYDIXsmGMIDEhmA4dWpMzZ068PEzCuO+IxkUlHz/cp2LFcowY3o+dO9azZdNKtm7+OtuyaSXbtq1l2ZLZ2JUvKw8diMkAcmlzEy2HDmxDEAR+XrNQvvDSCuC+DeKmzRJEvQJIwMfTjdGjBmNfyS5TgJcqZcOwof3kxSwGxMwhLsrzzRWR3mz4dYVZPTx82ADCQuXpVWlayiCBQP+3DB3Sj+zZs5ErV05mzZwk15IzH1sJiaxYPp86dWpx+OAuPj8i0wTyGDb8upJ6dWvLLUOpAiXQ8tHjOT+OH4l9pQoUL16McmXL0L1bZ3mhTpSV5WnFZ9IY19joIKyti9G8WWMMMnh0KVH07NGV3LlzM2b0UPLkycOZUwcBePn8DmVKl6Jo0SIsXTwXD4/nmFLUXwS57xuqVq2MS++eEmyN0ZinvgW6o40JkUZvZvr78WjUQTSoXxdLS0uuXj4pgySztLYE8uXL50v1xOtZp9al1x6NaIxn395tLJg/k6REdYa2t+8HeTKJ8eG0atUUp57dJJCbNAEkERsdxLWrpxk+fCBFihSmefMmbNm8lmpVJcfUoWtH7ty+hC5ZYc5UgBa9To1rHycsLCy4JTsqoqjFuZcjBQrk59nTm5gyMzu3S/MI5s6ZhpRuTuTBvUvkyZ2bbg6d5B3ZvjTpTgL5Yxnk0s5y3wfyAgXyU69uLdatW8HPP6+mX19nBEFg1MjB7NixgZ07f2Xd2qXYlLCmUqUKbNywki1bNjBsaH/y5csnt42lB3lSfAjt2raiSeMGXDx/hMuXjnP54lGuXTvBiGEDKFWyhNwBIv2eISWSpHhJ5Csa1fyxT0pb79wudWakHdn85NEVihQpTMsWTYBYHj+4RO48uWnSuAEx0QFAIq9e3KRo0cIsXzYH517dqFSxPK+e3yReG0RrWc3/4/jhBAa8QjQq5QBHzasXNwkJegUkIOoj8PV+ysWLR5g3ZzJ169RAEAQqVbRj2ZJZ9HDshKWlBcWKFcGpZ1eWL/uJY8d2c+fWKR7dP4866oM53S5F5HouXzyIhUV2Lpz7A0mnlLa9VsviRdMziN1atmgkD4TRys6Had/zYHOpN1r9kfNn99OyhWkntkFyuVeup2cyAyUp3g9Q4+P5gLJlSzOgfy9M417Tpta3bV3JgvlTOHZsNwvnT+HQgc1mzViWIA8NeiYPvnBEl+SXbvSqaAwmKvING35dzLgxA8mbNw+1alaVRrR+YYa69KIkp+Dd6xv8vnstixZMYe6cicyfO4kVy2Zz8fwfcv+d6pNdzz6jSE+Waur3bp9i5fKfiIvxxqj/+og8vTAiCo/399i542d2bF+TBbBXfcFWsmP7z+zauY7bN0+SnBiaqbADUUmMxofFi2by7MkVKe383QDPuP2oySsN8H3J5YtH2bp5DT+vXsjGDSs5fXI/H98/knvEE9KA+JMoXFSREBvEzp2/UEVWcleuXJE/9m/HICvKxQxbjEo/R4zm/LnD5h3I6terLQ33EDOJzA0qYjT+hIZ8QK30NbdvfdYMSiLDPQkL/UBcbLC881j6QSkgjQb1eP8Ef9/XsrAt/U5iptr43j1badOmFRXsyqVZ5KUI+/TJA+TMldPsAK1ft4KwME8p3UwSTx7foHLlStSqVV0Sq4mxXwHyRHy8XlK2rC0ODp1k4Vp0msfj0sDkk98VY0lO1jBurBTddOzQhuQkqQ5t1GsyGEZpOt2SJdJI26uXT8uOT3SGY0WDNPL06uWTrFu3HG2slNLM7HmztsycAw0pyVHs+X0rQ4b0J2fOHAwbOgBVVCCHD+1m3tzp9HHpSYUK5cmbNw8FCxZg2dJ5KKP8AANhoR+ZMV0qmeTOzdbcVwAAIABJREFUlYstm9diNERL0bwYx6ED0pzvPi49SUlSytFZAseP7kEQBObPm4EopgDxBPi9pVixIpQrZ0uUwg9pYEs0w4dJs83379smOahf3As+gdu3zkqfQcc2fK3aPS3IFRGe5vfbpElD6tapQeNG9WnXthVNmzakRYsmtGzRhObNGtOqZVNatmhKixZNaNq0ETVqVMXCwuL/a++846Mqs//P11X3t98t6u66dgXdr+6qa8OCq2AFQiihE3qvYqUI0pFOKGkQItIRkN5FOkjvNUBI75NkJlOSaffe9++P504ymdzJzCQgCcLrdV4QZjLzzJ3nPu/nnPM552Ha1LF4dnYrMqfRsP4HNGr4EbbCdNx7C0yeOJKXX36RS+dVHYZThyLr+Wn7KurWrcNL/3mee++9l1o1n+TUiT0ikqEexmIryqS32kFy9swJFOhTadsmRBVbRiAiHLnMnjWBGjVq8Mc//i9NmjRgw7rF6HLigAKuXj5MnbdeZ+CAHuhy4lCkEvU6mLAVpjF69GBef/1lHnzwb8XOxysvv8jMsHEkJoqjk61FKWzdtIyuXdry0EMPFj/vrrvuonevTljMyaBkoyg69u5azaKFkfTs0V4VfP4A5Bfnz13q9aFDBvDEE4+VEru99up/yMk87wZwN02VnElK8kk6dRSbrz/84f8RET4Buy2dsgJsNx2YnEXcpX20Dw3hueeeUVOB3YVGyw3ksjMVe1EiO3esYMni2RzYuwanTTjHkj3ZO8gT4g9yzz130759c2yF8aVALjuTkaRMOnZooS7qT7NgfhiKlOqW8/YBc6c4TF2cgJaB7EgVJ8iQre52sjR2L77rxJEzQBblBBWBeEnzgAxKzuLN9bC8ACwfxZmFZE/XCJmrk9ZVh1kqP155iBfDXNKpHp4r3ORq4KAqf2XvoXRxQpnwfiNmT+Kvf32ATh3bkJx0ViwISn6xF651wInriNJr107QoMEHNGncgKzMyyiKwQPk7nlwlxpZ5/dC6KlgLpvzduVBC9HqJy5AXkDsvNk8//y/aN48mPnfRYjmK4pIJ6xcsYDHH3+Uzz/rx7WrZ1TAm8VrSOJzXrp4lIP7t+NvCBqKuHDuMG/XeZNu3TqqgC4vB+0GW8VCVqboRf7ww/9g9arFgA3FC1gFyAsZNEjUu65dvdQryF0wT0+9jLVQHBPp+f4VMUUS4549azJ33303L730Aps3rkSW7Wzftpq//e0B/vbXB/j4o/eYNWsKiQnqPMOiCvDEd7h0cQw9e3bmevxZFNmo1mbn8+24b3jmmVqsW7MEkIo3Q6nJF3nnnbeYNmUckl0V1mFh8KCBdO7UlvgrJ1EUE2Bjx09r+O87bxE+e7K6GfMBcsXM8WO7adSoPuPGDFNTBIGA3Ehy4lmefPJxBn7SC6dDj9Oejd2aicOWhd2aibUwA2thBraiDPX/ssS/HQY2rFtKzZpPMmH8NyrIdcVRNIc1k9MndnPs8A5MhiT1nHLheRfkJ5CbfRV7UYbbIUYmLl/4haeeeoLnnvsnoW1bcGDvJjEn3UVutkz279tI716dOHl8J7JkICXxNEsWRWMuSESRhZYm/soRPhnQg0XfR6gRSLOqfBcnXCZdP4nVIkqU3SOWijMLWTawYnkMDzxwP6+8/ALDhg5k18+rKTQl4mowJbq+6XCpyPN0l9m+ZRljRn1Fq1aN2b71B1zRUMjl2OGt/OlP/8s999xNvbpvkZ56Wh2Pez8QHf37duGppx4XTV+ULFq0CObFF/5FcuJxRC8TD444UnHYM/lp23L69OrIgX3q+elKlhd2ucqn03BYE6lXrw5PPPEo7duFcOL4NhRZMLEUM9WzR1ydVt1Zqwly2ZmM0XCJHduXcfrkduzWBMqeaJbKxfM72bnjB5ISDgPpyE5/OraVVqjLjhQUp4C44kxTB1/xFqyy2pqvMhB3/1LLWmaAluVXaRlSttvzbhzEPU1x5oCUU0bM5ssUKRdbYToXzh5AsotcueJ2gpMnwEudVqZ656aCZPT51wE9sjPHb1D7tsr3AHdZfm6CmzhP9I4XoDdQZMnk8sWjxSFqzTy0qpHwN8SsSAXo85KIu3SMpMRzSA5XON4/jxdF6A6OHd1NkSULRdL2xmWnKpaTDBw6+BNzomZwPf6MGir3/h5Cpe79NSsEc7mA/NwkDuzbRlbmVeH1yqKG/MjhnVw4d0i9xk6x8HtcZwFhkwp2c8m1lMVGISH+DIb85OJ0hCLpcdhyKdCnqJs417XPx2JMx1VaK9I1ekwFqRgLUtTNg+85o0h5OKw5YsOoGAKCuCtFZCpI4fzZg6Qmn6Okv7gr1JvvYe7/byQr4zInju/i+rUTYtNRfE+6dC1qbwOPiJuoJ9eX+n9FyqXInEbcxcPk5lzFpWtRnBoOgpqKkxzZKM5sdTxm9VAV17qXpQLcoNaLl21i5Xq+55qoSDkUmpK4dP4ABfnXKO4QqejU1/YQGUtZKtT16rhzsFqSiquGFCkThzWFzRsWs3PHSnIyzhWv66XWfSmD0yd2sGfXGvJzLyPb0zh+dDt7d6/BqL+KdqQ3FUU90tSV8y6/r4l7L5Q0Lp7fQ9L1I4i8eeleKcJKp6g9eaoJcnF4itoQhGw8u8gIS1TfNI+So0sDMX/PFr/5fdQDs1+37eqNhLhWz/RATITgzW4evG+Ie5bZBOJp/9oQL8mRmzQgnVcM8MqUX2l65YpR3TgEGrp297StfgK35NAS0ZDnxgE6oDFjUkFdWBwRENdX7aWulJ+LVyR9qRREaR1AYfEGrNTzNb5XcTa463XcxY6lKxl8w1wtW5T1Ho/56ZXL+eq4tU5cK+++coHa9Zk97ssA7/GSs9FFhKsE8t6jfS4BXFnLEoCXc9SNgD9rmVZnN4PqsWutl97XXqQsNZ3p1sfDmUFJKaxOY30vETsLlX4mkj1N/dmgOoneOSMcyfIA7iXErjaJUYors7yDXMu8gNz7cWne7XaH+K97AMrNA3jgN3Z5B534C3GtMHpVgfeNhLJvuzXgLBvi1g6nVw/7tb6rGz3PKjvvA7zPHJ5W2Xu+og5DoOtaRdbOQNbmwJy3QLkSGLMCYWGVAvnNgnhgIP9teuI3GOK/OsCrK8RvNfhuV6tuQL8R878yML8R935VhXmg6/PNhHmVAPnt740HDvFAQV4VIX4jQF4ZL7yqeeJ34H37WHWC+a32zG8VzKuaVx4YzG8eyG8MzD1AfvtDvOqF1KsDwCsD8arkhd8B92/HqgPUqzPQfw2Y32zPvKqE2APhojbMf3Mgr94Qv1Xh9FsF8erggd9qYFXUDAHarR5vVQN6dYd5dfHMA4V5VfHKf90QuxvIqwrEfyt58V/DE7+B4fRfNYxeleF9q8FUGRjfKrvV1+lmg706A72yUL8TZq8KMFdB7q3ErKoL3KorxKtLSP0OxKsWwG81kG8XsFdVmFcW6LdzmP23APJAYH7DQH4zIB4IyKtKXvx2DKffilD6HXjfXrCuTpCvalCvjp55VQT6zYN5YEC/+V55BUF+Jy9+xxO/A/E78L7doF6VYF4ZoN8Js1c98dvNFb7VkBzpaku4Ww3yqpAbDxTiVTEv/luDeHUF+K2GZHWzOzC/aUC/pV55VcuXVwXx268C8uoD8ZubF69qnnh1C6dXJYDfgXb1tOoC9Wrind+2nnl1zJcHBvMAQX4npP7reOK3EOTVwhOvLhC/1aD7rdhvBeh3YF69Q+w3T/h2k0B+6wVuVQfigYL8dgZ4VfHC74D79rbbGejVKdRelbzyqgLzmxNi9xvksl0cn+ayG+2N+3diTGAgV5yeR5He2Ly4f0eUBg5xxZlTym40yJFyqXg4XXuRcJ1Z7rIbDXLUIypvJMAVyeBhNxbg4kjRGw8qRSpwM39+pyAgUySjn8+t2JhvxvUQJ7/dWKB7zo8bDXPkikK9fGC734el78XKe+aKU1fmONQ7MK8GIEdJA7LVY9YyVXP9nFFJkIsByw5x/BtSBjcC4iiu41Xz1b9zS/8sZ1ExkJcGtOLMUo/o05pQgU1IcZ6vQT0+sKD4yE/xbxOQrwH1wCGuOHUg5apHkVbeExfjs6hmUs31cwE3BuICshUHeekFWhxhaFWtSD0Cskgcn0mReoRm5T3vkmMpK++ti3PHbeoxn1Y3s6tmIVBga5k4m7voBryWAUUyqtfVUXxMq/hZPaoUU6WvSwnIjSAby3me/wAX18DmZX4U3pBjbF3zWRzFWnnvHMU1bov6t8ntZwug50bAXHHqQM4LEOY3G+h38uVeQS7OI9dhMV7hxLEtLJgfxqwZY5gxfTSxMVPYt2cNhryLKhjTKw5x1RMPnzWe9JSTIGdVGOSyIw3Qg5TJtbhDrF09n5lhY5g4YRgzw8ayfu0CkhOOg5ylgrHiIXUwsnXzcjauX6zeJBUHudhgGMnNjmPvrvXMjZ7OpIkjmDJ5FAvmh3PqxG7MpmRxY8q5FYY4Sj66rCvMnjkRqyUdRcoP4MbO1Vg4rJiNqRw98jMLvo9k1oyJzJoxgfmx4Rz6ZRsF+mR18Suo4EKVjyzpQTExJ3oGly8dU4FVcQ8cHCAXcPXKKVavWsyMsIlMnDCKWTMns37dchITzqmLoM3LQu8HdGUBlnVrlnHm1C+A3e/f1d4Q2AALqSlxbN70I7NnTWHihNGETZ/IjysXE3fpFALCjgC86bLgBTsXzh1l9aolKhhNlXgtAfDsrAR27dzMnOiZzJoxmdkzp7Bs6XzOnT2M5NADUqW8dCji2pXTxMyZhaKY1M9f3u+UA3DFCNixmDI5eXwfixfOZeqUcUycMJroqDD27tmCTpeoAj6QeVgW4mBiTlQY16+dUjc0FYe52GjoSbx+mg3rlzFr5kQmThhB2PRvWf3jQq5fO4ki5SHOfs+jojAHC/t2b2DlD7GAEUWqrp75bwTkkA5ksHxpBK1bBdOyRSP69OrIxG+HMmH8ED4d2J3mzYNo1TKYBfPDKDRdU9u8Bg5yyOPIL5t48cXnGDp4AOIAec8P6vvCiAPj8zh3djfdu4XyyCP/oEaNGmXsiccfpV/fLpw/u0d4vB4Hz/sFcSUXizmFHj06ULv2y6SlnAHyKwRyMGAsSGZm2Hhq136ZGjX+p8yY//CH/0fDBh+wYvk8ZGeOAGNFQI6ZVSvmU6vWU8z/LhywoUj+7NI9vXATToeOFctjadmiCS1bNKF//558O/4bJnz7DQM/6UWrVs0IaRbM999FYLfpAHOAC5RY9MDB7l0befbZfxI2/VvAgiL765l7euGFnDi+n549OvPwQ9rz48knH+fzz/oTd/m0gJFcQKAQhiISrp/jpf+8wJdffILdZkaRA/U+C1SP1knc5VMM/KQvtWo9pTnmBx/8Ox07tOX4sX2AVCEAK7IZh8PCoK8+5T8vPs/1q2cBa8CvIzYUTgz6dMaMGU5ISGPatGnBV19+yuRJ4xg7Zjjdu3eiadNG9OjRmT27t6nQtwR4fVRPHCsR4dOoVespftq+DpD9/H0tL9zEujVLCQr6mD/84Q9lrvP//M//8NprLzNtyjjy85I9Nnv+gxysXDh/mNdff5W+fboBZnVOBxqpygeKuBJ3nAH9e/Dkk49rzo+HH/4H3bq25/ixXQL6ip5AYY6sx2bL4YvP+/LCC89x5dIRsQGpMiD/bcPcA+SJQAbWwni+HtKf9997m2VLI8nNvQDoKAn35mE0XGb71mU0Dv6Q1q0ak5VxWn0d/0GOnIXFlED3bu2ImD2e9qEtOLBvHZAfIMQzgVxWrYjhySce05zMWgv2xvWLAAPCm/Y/Lw4FfB87k88/683Y0YMZM2owKLluIXb/Jh0UkHj9JM2bNfJrzHff/Ts+/7wvRZZ0Me6AIG4kNfk87UNbMm9uGO3aNifh+mnVGwgE4kby8xLo07sLwY0+ZuWK78nPS1QXY6dqNowFqaxds5gmTRrSu2cXdDnX/YS5+4JnIj8vlW5dOzB3ThjdurbnxLE9aui39HO9eeGyUy88ZMzEzgvnHw/+3a9r/c9nnmbzxlWANSCP0QWXYV9/ydjRw+jerSPbtqwGpHJ+TwuIRkBi58+befbZZ/wa88MPP8SKHxYCdhTZHCB8JXbu2EDXLh0YP+4bhgz6DChCkQLbFICTuEunaR7SmPahbTj8yy5s1jxK/7GTmnqNmLkRvPHGa0yYMBoFMyhmj+tRPojBxplTB+nYsR3RkWF06dyeXF0KUOj39yVex0JRYTZDh3zG739/r1/XOqjhRyRcP68RufEBccWI065nQP9ezJwxga5d2rNt649q1Mb/nLki5QOFbNm8yu/58Y9/PMjyZfPEZljKx99QuyIJb3zNqoX069uNKZNG8dUX/ZHsOjVCWB1D7LcXzEuBXHamYrOm8vlnPQhpVp+kxCNq2DcTd4Gb7EgBMgA9+XmXaR8aQquWwZgKroKc4RfERRg8j0ULZtGvTyfs1iwWzJ9Bxw4tsVqTQc7060K4Xmfr5qX87a8PFO+cfVmNGjV46KEH2fHTKsDgI8zuHlLPJT3lDG1aN+X0iZ/J18URFPQhRw9tUz1l/0COoidPd5Wghh+W2vH7GnONGjX44vO+OB064U37kxeXclFkE2NHD2XC+OFAEcOHfcGIb74CpQBF9hZu8wynG5CcufTs2Yl27Zqjy0lE5DuNbqIa1yIjwpT6/BS6dW1Pz+6dsFpz1Pyzb4iL8GMRsTGz6dKlPSiFLF40lwEDemGzGVA085RagiU9YGflD99z7733BnSdH330EQ4d2gk48TusjsyWzasJDW2F02Fg185NtGvbktycJA/AlOMdS+LaHdj3E08+8XhAc/r+++9j44aVAublhdmlEoMiDPo02rdvw0/b1yFJJjp2bMv69T8ID1fyF+JWUpMv89GH7zFu7DdI6mbEM3+P7Mr3w7Fj+6ld+1VmzpisRoi8h+tLbZhkI3a7kYED+/BdbARgo3u3jkRHTlc/u3+bLxGJMDFi+KCA78P36r1DVma8+vl8w1zcF1Y2rF9G1y7tsZhzWb9uKS1bNsVkSlc3ur5hrjjzgCIO7N/GY48+oo7Hz/lx332sWb2IkjC7b5ij6NHnJdAhtBX7dm+k0JJOk8YN2LH9RzHmgFN9d0LsNw3ksiMZyCZm7mRer/0SidcPIcLc5SvUIQdjwTWCGrxP2PRR6mv5E1LPJiPtFC1bBPPLgQ2AmUJLEl27tGHxonAgDxFi9yVsyyYl8TjPPfeM3wue+8R+9503yc+NUz+rL4GbyI2PHzeU0SO/AvRAAUsXRdK1cxushRmg5PqcbIqcgyLlMWTwJ34vHu5jvueee9i4fplYQPzyxgs5fnQnLVs0JiXpHGAnM/0yIc2COHRwm7qAlC9qU6RcwELsvFm8++7b5Oni1dBr+ap0sJKnS6Be3f8SGTHVzRvQBniJN24hMeEswcENOH1yP+DEYsqgU8e2bFi3XPVwteFdOmRqJeH6OZ5//rmAr3ONGjVo0OBD9HkZKIrv0C8UkpebRseO7VivjlFymvl0YF/CZ0/1ASp3IBZiNmZSr+47FZrTzz77T1JT40TkQioo1xS5ALAxJ3oWnwzojdNhAmQ2bVpFaGgrdDkp4nv29TqKGafDSIf2bejZowuSZMKXaE5sWBQOHfyZN15/lZPH9wMOPzYNYsO0edMqOrRvQ4E+HZC4cO4wTRoHcf3aGXVu+hM9sbF2zTJ+//vfV2h+jPhmEEIA50rBeAc6mDDqUwht15Lt21YDMna7gf79ehIxe6oa/XH/PS8hdaUAXc513njjtQqtHy+99ALpaRfV+963oh2shM+axJdf9FfXvEI2b1hG2zYhGPXJIlRfZbzy2xnmfoAcJR1D3kXqf1yX77+bDhSUC/ASSwLyWL0qhjfeeIXszLM+vHKXN57DuDGDGD3qKyAP0fM9j3171tCmdVOy0s+CkuUb5BiYOWNswBPa/WZcuXwuQvzm+cV6QtzEkUPbaNmiMRkpZ4A8FCWXAn0i3buGsmJ5DGBSQ+zl5cWNxMcd5cmn/Pe2PMfdPKQRdmu2qj4vB+KyHlthJr17dmbxwig1FChCZQsXRNKndxdsthwPr1xDna4YMBUk8/7777Jwget1/CstAydLl8Tw/vvvkp+XAHh65RqKXtnCiG8GMX78N7hyiGBn188baNumBdmZ8aqHW375EEiETf+2wvPjnnvuZu3qJfjKvQog2omKmC5A5jShKEL9fOHcEerX/5BrV06rIVRfcLOyasXCSs3pWTOnCDDIxnIAbACsJCacJyioPmdOC2GeophRFAu9enZl5oxJgMPH64jQ/MEDO3jrzddJiD8ngKz1XM9Ni2IGrPTq2Y0+vbshyzafOX6wkqtLIbRdK3ZsXwdI6vUvZMrksQz7+ktkucinVw5m7NY8mjZpVOH78IknHiM58byGV14a5iIyZGX2zMl89cUAUMzq/9k4dXI/LVs05Xr8aTev3DvMwcGihdHcddddFZ4fc6Kmq5tqd/W7FsQLuXj+EC2aB3PlssiLK7Iea2E2n/TvSUy0+jp+qNiRcgGDumaVhrXiyMZVVaRVcouSqz6mDfayj7ut23IOkKtZXYSUBeSCnF0NQO4d5iUgJ4tf9q/jzTdf4frVg5SI13wbSga5Oed555032bh+AZDrwxvP5dTx7bRsEUxSwjHEoS0uwOsYOrg/kyYMB/TlXgDFmYHTnkWTxvUrfCPWqFGDfn27IDszNb5Md4GbjkJLBv36dmH+vBlAQfHEADN7dq2lVYvG5GZdBvTlgDwbMLNyeWyFFmrXuJ95piaXzv9C+YITITJbvWoBXTq3xWxKB1mv3qB6igrT6dypDatWzlcBow1xkRs389P21bxd53Vys68SSGkZmMhIu0Tt115h5471lOTKvYmBHBw6+BPNQxqTlnIJl0JYkQ1IThOff9aPmTMmquFB70pksGAqSKdxcMMKXWfXtf7s034osgUU74I1KOJq3EkaNviIs6cPFXuWihpGnj5tAp8M6CMAU07+GhXkvXt1q9T8aNw4iOJSunK8aLAycGBfJk4cLSIGikkFs4OLF44T3KgBly4eFxs3r169CKGPHfsNHdq3UX/f4tOLL9kEyGzcsIq67/6XjLSrlCeyExsdG5ER0/n003447Bb1eorvICsznpYtmnJg3zafmy8o4nr8Wf72t79W+Drfe++9/LDcdf9421Tmq/PjBC2aN+Hi+cO4q97BxsRvRzJ82BfqnPb05t3C6rIeRbHQpUtopeZ0aLuW2K2ZCI2QdtMYRc7Hbs9n8KBPmDF9vAC2uuGHIk4d301IsyCSrp/ysQ6pEJdyyUi7gK0wXV0jS8powUBezhX0udcQwuESbxzyMRkS0WVdAvRlYA75GA3Xyc64qEZEs3F52yg6HNY0stLPC2BLrsdUwEvZpKeewVYooss3EuaBAb1yMHcDeSYxcyZRv35d7NYEkNL8BHkKSOnYixLp0L45s2aMVQGsDXLFmYHkSKd7t3bMiZ5MSQi9JOSeGH+E5iFBnDqxo1yYQw5Z6Wd45ZUXKjWpP/6oLraiFFDcv8gSiLsEbj+ujKVd2xDMxmREKF59jjMbRTYwbOinTJ44QnOyFU86SQdKHmNHD63UmP/0pz+y++d1QJH3m0cpIE8XT9OmQezeuU5dPHLcdtsW9u/dROtWTclIj6N0qM0T5EVERU6jTesQUcoiu8Qy/gpzTDQPCSYi3BVe184lgomiwhy6d+vI8mWxqmfn/ngRcZeP06DBh1y6cFR8fm8iN4pITjzPS/+p3Pxo3rwJZmMG3pTVilSAohQxZMjnjB83QnjCbvlpsJKRFk/rViH8vGMDIi2gnbNGMaEoFt57791Kjfnf//4XBYYMEbWQjJoGMrt3b6Z586akplwVMFIfExsQO1Mmj2PQoE9R5CKhvNd8nUIkyUi7tq0YO+YbwOnTgy8NcgcXzh/l/ffrcurkAcoLr4OVa1dOExRUn4vnj6kANRRfQ5BYtWIhXbu0x2zM9vqdCZBb2bZlDffcc0+lHIEJ345Sv1MvG0rZiKIU8unAPkyZNAbPWnQwkZsTT+tWzTiwbyslwreyMAcjBfok3nsv8LSL+7jfeONVDPmJiOiYdgc4sLDjp9WENGtEbs519bkq6CVR9jZpwkiGf/25KEf1otlx/f+4sV9Ts+aTtGrRhMz0i6Dki/VI0rN1ywqe//ezvPLKi+z6eS0oBaonbuD0id28V++/PP1MTRYtiMDpcDXKElqjc2f28c47b/J0radY+H04KPlizVbySE85Q/vQFtSq9SRjRg+myJwEsg6kbBz2dEaN/IqaTz1Bq5aNyUw/C4ruFnnmNxDkUyYPJ6RZAyALxVl+btwT5A5rEj26t2PCt0MBg+abueq8lywKp22bJhQYrqrh85JBKk4hXosIn8DAAd2wFmWgyNohdsgl4doRXnghsPyn56R+u05trJZkryCHXLIzLtA4uD67dvyo7j5Ll5mBnvgrRwlpFsT5s/vETlcL5HIuSDkMVfPjFR3z3b/7HVs3/SC8Fw1PXFHrS8eOGcqXX/ZHlvJFSMtjxy05DQwaNIDpU8eKcF8xoD1BbmXKlDF069pe/BxAVyqXwrZL53ZMnjTGK8hdArdVKxfQrWsHzKYc1QsuLWYDKzPCJtK7dzckyYSimZ/Uq4v+Kf75z1qVutYN6n+olhtpqaEFPPbv3U7TpsFkpV9DKzcMCitXLKRD+9YUmrLV19KCmhmnQ88rr/ynUmN+5pmnSU+7KsaiCd8iigpz6dixHUsWxwJoPMeKLieJ5s2bsmvnZkDxCnJbUR7BwQ0Jnz0NQIW+vyC3E3/tLO+/X5dfflHFhRpheEU2oShF9OvXk6lTxqOVpkCxUGjR071bJ5YuiaU84RtYWb1qcaVB/s3wQar3r5HeceoBB5s2rKBZs2C1eqN0Dbor7L50SQw9unfCbPac9yUwBzPn4C+uAAAW40lEQVRZGXHUqfNGpebH888/p+pctECeC+gxFSTTokVj1qxeqM5pz7B7AZnpl2jZsgmHD27z6pWDntzsK9x331+Kr9miBZEIQayeInMqTZs0dIuQdgVsavTSxrgxQ4sfe/ONV9FlXwbyhUet6Ph6yMDix9+u8zqQB5LQBq1eNb/4sQcf/Bvnz+xV3zeP+KtH+POf/1T8+I8rY1UnzJ/cedUKsZcCecTs8TQKeh/ZkQJSql8Qd/fIO3dqpQretEAuvO2sjLM0Dwli84ZFqrddtvELio6C/Ku0bBHM2tXfIcIwZS8K6MhMO80rL1fO4/rww3exF7o8cg8xhFOEn6ZMHsknn/RQhWrZeIJcdGYzEjF7Ir16dlKBraNMWF31yEePGlypMf/xj//Lzh1rvHjkYjd99vQ+goM/5sK5XygraNMhatItxF89SVDDjzh7er+6yGh75LNmTqR9+1aqR+5/3asAuYXWrUPUnKs2yMGELvsaTZoEsX+vyzNxheBLh8yzs+Jp3rwJWzevokRVXtYjT0o4z4svPl+pax3SLBhTQbqbd+cO6CIsplw6d27PqhWLVAiVVYsrkgm73UK/vj2InReByDtrQE31yOvV/W+lxvyvfz2HQZ+u6ZG7QuELvp9Dz55dsdvFe5aBtGwCJNatW07Hju0wFuSIjaMGyJ0OAy1bNGPSpLGA7NV7L20lHvmli8d5//26HD+2twTkGnn4HT+tp1nTYDLS4jU3TALQEocO7iQ4uCGZ6epmxgvIt27+sdIg/3b8CK8eOYoZgz6Ndm1bsnzZd+pnKyuGAzO2Ih0dO7Zh4fwodQOifY8Y8hOpV69yHnnt2q+gz/PmkYv7fU70dLp3a4/dmqV6zx7rhyRy6EsWRtM+tJXQ7Ej5ZUEu52G1pNO1czvu+8ufefPN17h65RgoBpBzkZw6oiIm88AD9/PQQw+yasV36qYgGxQT27eu5IknHuP+++/j23Ff47BngqwTa66Sz0/bVlKz5hPcf99fSkVEUQxcPLef2q+9zH33/YWuXdphyLsq8ulyDoXmZLp2bstf/vJn3nrzNeKvHgElzw+IVwWYl5Mj37F9OW/XeY3MtBOgZPoPcjkdc8FVGtSvx4rlUUBeGYi78t9TJo+gf78uoGSjONM1Qe4SsW3esJiQZg3IyTwPSnapDyw70lHkTBy2DBoFfVCpG7FXr47Izgw1R15a0QgFXDi7n4YNPuDyhQPqpkK76QvkkZ97jVYtm/DjiljAjOIGcVcfdTCzdMmcSuVAa9V6ivNnDwhAe0JczkeScunXrzvTpoxBhHq9KVOF5x4+exI9e3TC6czT9MrBwpofF1Gv3n8xGVNF6MvfxhVKAYb8JOq89Trr1ixVvVFtb3z0qKEMHjxQdNkqbvyiJWJzsnrVIlq1CnGDbNkcudGQSsOGH1dq0Rv4SW9kyax6SZ75WgfLl86ne7dOWMz5oBSWhUuxsMzB8WN7adG8CelpV9BSlbtasfbo3rlS86NRUH3AKmqzNTzt7OwEWrcK4fDh3SWbDy1vWymiqNBAr55dWbQoBhE2Lw1pEYZ3MmTwF/Tq2RVFEW1BfYPcNR6FvXu2Uq/ef0lMUGuzy0C8iEJLNm3btGT5svmIjnDa5XWivK2I4cO+YtjXX1G6FM9D13D5JPfff3/Fc+T33MPSJfPwliMHO/NiZtOlcyiSWjbnXdVuZ/++rQQ3akBSsYDO4z6RDSiyhY4d2lRqTrdpHYKtUCtHLu71pIQzBDX8iGNHdnhxAkpK0yymNDp1bEPsvFlAkabwDTmPInMap07sVjU2JX0wXG2j4y4e4sqlwyDpSgnekHUkXDvOxXP7ke1ZIOWUdo7IIyXxJOdO70GyZ5ZKayLryEq/wJmTuyg0JYFc4qyh5FBkTuLksZ/V/Lu3yqVqBfIMsjNOUa/um2xYO1/1qv0BucgX79+zhldffZH4q7+omwBPgZuO82d307jxx1y9fABRu64NccmehiJl4HRk0KtHB2ZMH40QQJQGuexIB4xMmzyyUgrfpYvF5kPxaLOqKDqc9mz69+tG+KzxgAFF8t70RXFkAWbWrPqe5s0bkZtzhdLCDXViYibu0qHiGtCK3IiNG9XHWpTpoVrXoaje+KaNy2jTuhlGQ7Laz9l7nTiIXHpIs0Zs3LCMsmVlQrWelXGZt96qzZbNKylRrfsBcpxs2/Ijdeq8QXrqJcoqc4Xg5+SJvQQ1/IhLF4/hS5GObMJmM9KvX0+iIqerm5XSwjdRXuRk0sQxFZ4fd9/9O1auWABQFhgUkZF2lSaNgzh44GdKxFXexGVCqDV61Nd8/fUXqlfuCkGXzk0vXfJdpeb01KnfAjYv0JUZOXIow4cNFpBTyvOehRjt2NG9BAc3JDXlsgrasjDesvlH3n33bbIyE3DPt5dnQnAn8c3wwbRt2xKHwwTF0QF3MZ2DmLmz6d2rGzarUX2O2/XVyKVfjTtNUMOPOXZkjxq18XyOBZs1l6Cgim30atSowSOPPMT1+LNeNpJFJCWep2nTRpw6uV+NDPhQtisWvvi8P2NGf01JqabnveLku9jw4jFUZH6Ez5qkmUpTFNGqduiQTxk/frioYPDaZ8LVLKaQHT+toXFwA9JSzgsvX7OCRuT4hTPkRdGOoYxqXTg/evG4pMOzLE1EQ/PFc0pB3uVg5YrHNSKuQtGup0TzdKvL0SoWXi8GueJMASWT8WO+omGD9zAZriDU5D68cSUTyZlJaLtmDPqyD5CF7HB/k1RkZzpORxaffdqTmTPGADr1Od5B7sqBnzu9k48/qsvli/uBfCSbB8iVHBLjj1Cz5hMVmtR13qqNLuuiGlJxF7iJmvHtW36gbZtm5GS5oFx+C1ZFEocK9OzRgRnTxwLGshNTPSnss097V6gO9N5772XNjwsE7Nwg7mqlaDaKWlUBZYvXm9D9tCQoYv3aJYQ0a4RBnyxCW6XqyEX4b+yYobRs0QSnI199bV8QtyBLBkJCGjNixCARpfBo5oJiRHLq6da1g9qG1e417+3p7Zw8sY+Qpo1ITb7otpi6e112rsSd4dln/1mh+fHee3XJ1aWiKKXDuAIuVkaOGKp6farAzWc+2EZKymWaNAli7x6hrFY08tcGfTpvv/1mhcb89NM1SU66WAa4IoIgcfDgTpo0aURS4gVNKJcNxYvNxciRQ/h66Jfis3puEJRCCgqyCQqqz7hxIxAd/nx75aBw7doZatd+la1b1ojNkMb1SEu7QvPmTTh2bC9eS9vcgO76rJHh0+nSuT1Ou6FMtMSlgF/5wwLu/t3vAr4Pa9SowZDBn6NVR65IBciyjZEjhjB29DAB5XLntFv/hOtnqf/xB2oXQxtlOh4qJrIyr/LSS4GnFGvUqMELL/6L5ETX5sPtHle98SOHttOieWOSk1yb7vLrzBVZVKZ88VlfRo0YLGAdUB/2X6O+vDrVlgcO81Kd3ZAz0edfpnXLYL74rCfWwkRAB7Kngl3kxSEP2ZnBsKEDeLtObZITjiHK1jxz4wa2bFxE8+ZB5Ode8umNl5SXpYMiwvGfftIDpyMLRc4sdXFEj/V8Nq5fxP2qmMLfm/CvD9zPti3LcS8lKxG46TAZrtOqZRM2rF2kQtMlgvNVJ27gwtm9NA6uL0JFGMpMQhQDmRlxfPRhXb9h7nregH7dcdjFDeQOcSFAsRE+exJ9encFJV9sUHx0bHN53HZbHv37dWfmjAlAodtuvaSMLC/3Og3qf8AXn/XD4RB1sCI85xlOVw/7UMyMGjmEBg0+JD83Ea2wuhAdLaJ16xAM+jRN70a7Tly8/7gxwxn01UC8tVMVdezfFTf98HWtXc955OGHOLDvJ9Wb88yNOzl+dC+Ngj4m/pral7xciBtV79IEKERHz6RTp1AKLUKJXxacDn7+eRMPP/xQQPPjz3/+EytXLKK4TatHLruoUE/37p2IjJiOqL/2J5ctgJeQcIEGDT7i8KGdgKThuTs5emQvb9d5g1UrFyO6utnLhPcVNfQNkJoaz8cffcDAT/ogOS1lxize28nw4YMYOXIofivi1cY6BQXZhLZrxcofFqJ1qIwiW7BZTQwZ/HnA9+Hbb7/hJQcvBG4HD/xE48YNSU+NE/PD7zldRMzcmXTv3glrUT6KYtS8Z/bs3sRDDz0Y0Jz+4x//lxU/zKd0Z7eSg5Ac9hw6d2rLooXRYsNUvF746P6GkaSEUzQOrs/xIz8TWB/2ygC9+sD8ZgrfVJC7PO8kIJvkhCO0a9uUDqEhHNy/FsmRooY99Li6mSFncOXSfnp0D6Vu3bc4f243ZevHU1GULHTZF+nWpS17doluRiK84m6mcswuRAld2rBn14+4hG+lYC6JWsIflvnfa/3xxx5h1Yp5wsvWahSAgTlRUxk29FNKjowspORIw/LMCijMiZ7KN8M+R5IMyGWaHIgwfOL1U4Q0DfJrzHfffTd9+3TFVJBM6V7rqjeOmcsXjxIa2pLkxDOIPw4Nc2qYA4CE+NOEtmtBwrWTlG3cIk5QuhJ3go8+rEeXzm05eWKvurBIbq8lg1LA6VMH6NO7G/Xrf8D5c4e1Ia4UoM9PokvnUA4e2K6OWQnAoNCcRadO7di3Z6u6+HiAXBbwiJk7i3/840G/rvWz//dPNm5YhejGVnrxR7HgsBfQo3vnYsV34H8kunbtyNKlQgAl4OQuNBMh5y2b1/D007X8GvODD/6dJUvmq69n8YCnAOLKFQvp3Cm0+PsO9M+KHxbSpWsHbFY9KFobECdbt6zjww/eY+SIoSQlXkS08S39p7BQz88/b6bee+/St08PigpFZYR7mkFWvepfDu6kY8d2mE3ZFRrz0SN76NQxlPy8FMoe9ypEb7aiPIYM/rxY+ObLPvigHlfiTiFSCB7zTTFhNmbRt2931q9dpo7C3/ksi2fLRvr07sqGdcvU9/DUlIiN8qZNP/rda/3vf/8r38+PAEyqkK6swG350nkM/KQ3Yh2TKb0++DJYvmwen33aB4cjz+8W0r8eyAOBebUGuavtajZGQxwTxg+hQf16dO3SmsmThrNowSyWLAonbPpoenRvR+PGHzNkcH/SU0+g1QRGdogWqlOnjOCJxx9h5vQxREdPJjJ8QkAWEzObFs2D+Pijuhj1V9VchwfMnRmAkTOndtKpY0ue8nISUM2aTzBwQHfOnN6DyKl4CtwyQckn7tIvPPNMTXp070DM3BlEhk8iKmISURGTfVpk+GSio8MYP/ZratV8ku1bV1DSk9gzX26i0JzK5EkjefON1zQXkj/9+Y/Ur/8+q1bOx2kTNe2eEFfkfGxWHT26d+DFF59n7pwwoqOnExkxhahIl031apER4u958yJ4u84b9O7dBVnWq155WZjrcuKZPGk0jYPr07lTO6ZNHcfiRXNZsmguM8Im0q1bRxoFfcyY0V+TmenyWrTyfVYmTRzFv//9HHOiZxAdFUZkxHSiIn1bZMR0oqPCmDcvgvfee4cPP3iPAkOmGkL19MpNgJWjR/bSpUt7Hn/sUc358czTtejfrxeXL4lF2rPLmCscu3RpLLWerimOuIwOJzIyjKgALCYmmo4d2vLmm7VJS3UJ3zyFZmbAycWLJ/niiwH83/9pL9iPPfYooe1ac+jQLop7m5cBYhGZ6fHUqfMmoaGtiYmJDmi8kZFhREdHMHnSWJ5+uiaLFsxFeP3awrdLl07RvVsngoMbMmBAH6Iiw1i65DsWLoxh9OhhhIa2JqRZY+bFhCOpKQetkLrRqKNRUH3effdtYmMjiY6a4fe1jowMIzpqBjFzZ/Pii88zdsxwtDvruc6Ot7JyxUIaNPioVKmUy+666y5ef/1VZkyfWHzOgDc1/PzYSB555GGmTBpLdPQsv+d0VOR0oiKmERMTTaeObXjrrdfJzryKlq5EeO8OrsSdoGfPzjzzjPaG77HHHqVnj04cPbIbsFD6DPSSw5BSUy7w4ov/pl3b5sTEzPayVkzRtMiIKURHhzFt6liervUUPyyLpXTqr6rA/Hb0ykuF1st2a4McUpOPsXrVXMaPHczwYQP5ZtinjB71JUsWhxN/9RAuxbu3VqySPZXNmxYzJ2oyc6ImCThHTPTfwicQFTGB2JhpLPh+JgnxR0DO0rxIijMdUV+YRfyVI2xcv4iI2ROYOnkkEeET2bRhMfFXDyPED66DUsp+gSh5XL54kJi505g7Z5oHwKf4YeK5c+dMZ15MGHt2rcVWlOkh1HCHuThGUZd1hYP7t/DdvFlMmzqGsGnjWLp4DieO7cRiFD2vPcVtxSF1JR+LKZUVK75j7twwoqOnacB7mg+bSnTUVGJjZ7N8eSy67Gte1emuM7tTki+w8of5jBs7jG+Gf8XwYV8xdswwli6OIeG6CDl7O7sZxYDRkM66tcuInRdOdFSY/4td5PTiBTs6KoyYubNZtHAuuTmJQgjltbe2A6QCrsadYuOGlcyePZWpU8YTGTGd7VvXkXD9gljscKB4adjicOjZvm0dc+bMImZuuDqOGQFb7LxI5sVEEHf5lCbIS/La4kS5pMSLbN2yhqioGUydMp7Zs6exdu1yrsSdLgaoAGtZAytXr5xhXkwEsfMiKzTeqMgZxMwNZ+6c2Wzbug6Hw6CKztzfywVhB1DIuXNH+S42klGjvmb48EGMGDGEiRPHsG3bWtVDlvGWSxe965NZtGgeMXPDiY6aGcBYS4AeHTWD2NhI1qxeisGQIUL9Wmp3RZTbFZqzOX3qF5Yt+Y4ZYROZNmU838VGsG/PNnKyrqvfh/cT1hTZyM6fNzAnehZz5swMcE67bBqxsbP5fn4EcZeOocgF2r0X1CZJYCLx+lm2bl5FVMRUpk4ZS/jsyaxft5Qrl48Vp7rKnnOQVwzyhOuniJ03i5i5M3ysGd4cginMmTOd2Hkz+WnbjxSaM0Eqv4X07ZMvv5W58nJAXnLKmUv1l4nsSEV2pAKZQB6ipZ12pxn3N0LJVF8jR8N0floukIvTlurzQiG74FiAq3+v+LtA9cKz3L4A7S9Q9OB1pRLy3f7tjxncTIjdJHtmOZNQLcGgQPUMzOq/C1SoWNBSerqD3L1Jg/h9f1MXWmYBjDhsOk2Il9SH56nPtQGid7TwEsyIcKpWu0l30+O05+LylktSF77MPYVhVf9tQxy76fvEK7FgOxDeq019DTslOV2PXt8e+VdJ7dMtXsOm/m7Fza8cteqdi/Cr630d6s8Sol5cG+Klge5PiNSXCZBJTqOP9ypUxyaL70Y2qZ/Drv5f2Zp0b/l58b6BXFebh9kBC05HPp7CuLJq9kLcj+QV88uu/uy7h7tcPD9cc8s1X/2d3+7zvBCnPbece6hkU1wyTtcaYikZfykvvCzIS0SvZlxns5dvnulRdzODnIdkzy5Zo6oUzKuLV+5/eF0FuU4T5J5QV5xpqnmDd1mIuzxzbfN/F6M4M4qt/OeWvriKMxOkTC/desr/EhVnlptlB2A5ZcwbwLVM1FXqUJw6L4cRlAV4STlIroblBWj5qvlXJ14c5pMNIBt8wLt0lzZXXXhgVuDVfC2wmr27ZWPZmmQfYipFNt1Q8w6ysoBUZDMoLmGYb3i7/96NtEDeF8VSbCW/6xvirnB95cxYbOUp3bXmhpgfJs069HIP0dGcn4HOc5f5cz95hNxlvRfvuzwLdK3QWmtKTHbqqBzIq0KIPRCQ3zqY15AcGX6B3L3kzLf5u5PwP1/gP/QDueiB7Mz8nSCBTLyKTm7vIPdHoe7bArn5S5fG+G++Fbza5t9C6g/EvZpP9fmvYf4D+vawX+Oa+la6+2eVmYMVnfcVuccCvY9Lq9j9Mz/WoN8UzG9Nrvz/A7eyhq0CDyYrAAAAAElFTkSuQmCC" width="498" height="60"/> (1)从左往右数,第101张是哪种卡片?
说:让学生说一说排列规律,说出它的变化周期。
(为一个周期。)
算:第101张 卡在那一个周期里,是第几个?
(101÷6=16……5。说明第 101个是在第17个周期的第5个。所以是。)
(2)一共有卡片几个?
想:一个周期里面有3个,所以:16×3+2=50(个)。
(练一练“是有关简单的周期性问题的实际问题。通过这些练
习,帮助学生掌握寻找每个问题中的1个周期,巩固采用不同的方法解决简单的周期性问题的思维方法,进一步体会利用余数进行推理方法的便捷,掌握利用余数进行推理的方法。
)
四、拓展提高:
今天是几月几日?距离明年春节还 有多 少天?算一算明年的春节是星期几?
五、课堂总结
今天你学到了什么新的本领?
以上是《2019年沪教版三年级上册数学教案:<数学广场—周期问题>》的内容,更多沪教版三年级上册小学教学教案请关注新东方在线小学网。