新学期开学在即,老师们都要开始准备教案了。对于一些教学经验还不够丰富的老师来说需要多看一些好的教案,这样会成长的更快。新东方在线小学网整理了《2019年沪教版四年级下册数学教案:<小数的减法>》,供老师们参考。
沪教版四年级下册《小数的减法》数学教案
教学目标:
1.理解掌握小数减法的计算方法。
2.会正确地计算小数减法。
教学重点和难点:
重点:理解和掌握小数减法运算方法。
难点:会正确运算小数的减法。
教学准备:教学平台
教学过程:
一、续前深入探究:
1.出示上次比赛题:(改变已知条件与问题)
前掷 后掷 总成绩
第一组
第二组
第三组
第四组
(1)小组讨论解题方法:
(2)请代表口述解题方法并板演:
2.集体评析:
3.小结:(1)计算小数的减法,只要把小数点对齐,相同的数位也就对齐了。
(2)然后按照整数减法的法则做,不够减向前一位数借一作十继续减。
(3)得数中的小数点要与横线上的小数点对齐
二、独立练习:
(1)9.1-4.5 6.9-4.9 9.3-3
0.89-0.57 0.26-0.16 8.1-2.7
(2)下面各题错在哪里?请改正。
7.9 27
- 5.76 - 8.4
2.26 19.6
改错: 改错:
(3)竖式计算,并用计算器检验。重点点评(2)和(3)
91.76-72.47 73.45-34.5 110-90.6
三、实践应用:
1.根据提供的信息提出问题,再列式解答。
上海市区人均公共绿地面积(㎡)
2.小巧和小亚一起去购物。
ACTqAcHBwcHBxWwAmUg4ODg4PDCjiBcnBw9BoqlQpSqRQSiQRSqRRKpdLWl8TB0WNwAuXg4OhRlEolxGIxPDw8wOPxDMLHxwcqlcrWl8nB0W04gXJwcPQI+fn58PX1hbOzs1Fx6kuUg8Pe4QTKwcHRLVQqFfz9/Q0k6ezsDB8fH0RHR0MqlSIgIID1/aSkJFtfOgdHt+AEysHBYTUqlQru7u4sMbq5uUEsFkOtVrN+Vq1Ww8XFhf45b29vG101G7lcDqlUSodcLrf1JXHYCZxAu6Cjo8PWl8DB0W/x9PRkyTMoKMhAnExEIhHr5/Pz83v9GtVqNSQSCQICAiAUCiEUCrssMfN4PLi6ukIoFCIkJAQKhaLXr5PD/uAE2gWq1mY0tnINDxwc+kgkEgN5doVarYarqyv9GhcXF0il0h6/NqqRSV/w3QkvLy8uO+VgwQlUj3ZNO+vf1fVKlFVX4HJdDa7duI52TTtu3bplo6vj4Og/6GeTnWWeTJKSkgwajdzd3eHv74+goKBuZaUqlQpfLfwcjk5DjUpwjKszJj/ugjc/cesy/vb83Rg12tFgXTckJMTq6+MYWHAC1aO2sQ51qgZcvX4NGq0GZdUVKKuuQERiHOb9vAjyiguob2609WVycNgcpkCdnZ0teq1MJjNYO2WGh4eHxaKSyWQYP+E+g/eaOuNezBU9gm9CnsCcpe54+Z/jMflxF5Mxdca9mLPUHRvSXkBwlhBzRY8YiLQ3smYO+4MTqB4K5SUUKUrwyQp/pB7PRFl1BUoulWLez4vw9fpl9L+P5MtsfakcHDYlLCys2121EokEPj4+JkutHh4eZg1fSEpKYr1uqKMAb37ihnWJz2Gu6BE8MGWUxSXbO0YMwVzRIwjOEmJVwnTcN34MK2M2N+PmGLhwAmXQrmlHWXUFYjMOYNZ3fjiSd4z177iMAyirrsBvsaH4ddcm/B67HRcvldv6snuF/fv3Izw8nAsr4uLFi7b+8/UJ+uuZHh4e3X7PpKQkeHl5GXT1diZRuVzOKgnfN34Mvgl5AitjPDH5cRejchw20hGPPTURT3q645nnpuKFF5+HUCg0KnJKop8uf4zLQjlYcAJl0Hr9KsqqK7Bsy2p8teZ/uCb/GtqiN6EteBzaM09BK38PxWe34T+/LMHX65chIzcH34WsQnzmITS0NEF9s83Wt9BjhIeH2/oS7Jbm5mZbX0KfER0dzZKKr69vj7yvfnZravCCWq1mlYJdXV2hUChw4PBODB/JLrs++sQkiIN/wOXqS53+bqVSyRLpqNGOdDl3xKg76K8HBAT0yL1y2C+cQBnUqRpQpCjB17/8G5qi16DNm2wY8jeRlZuC5OMZWLhehCJFMcS7NiMw+GekncpCeU0llI1X0NSqglartfUtWQ0nUOsZTAIFAD8/P5ao/Pz8euR9zdnyol+6pbac6Hf6hoWFWfS78/PzjWahf3p4JKsrl2NwwwmUwaUr1YjNOIArOTOMyzNvMlovBNKNRT+Hb8BvsaEoq65AXMYBzPtpERauF+Hg4c24XvIfaM+/Du3513Hrwmzcakyw9e1ZBCdQ6xlsAlWr1fD29mYJx9vbu9trhGq1mlWa9ff3N/gZ5gQkFxcXADC4FmtLrUwJPz9zHIKzhKySsFAo7M7tcQwAOIHepqOjgy7fdsi9jcqzvfBpVFSfowVaUFqEeT8tQuzttdGSS6XYlxaK9vPvGr6+YAraS+2n5MMJ1HoGm0AB4xL18PBAWloapFIpUlJSWNN+qOhqqDxzPdSYsJhDEYRCIRQKBesaulNmZZaGPV93RXCWEOMfHsFloBw0nEBvc019HUWKEnwkWoCWjEdwq2weS4AdJe+jrmofLU8q0k5lYdZ3frREqbhckYTGCytx9dwHaM9/gryH/E3caCyw9a2aBSdQ6xmMAqV4++23Le52ZTYLUZOC/Pz8IBKJ8OKLL+ok5ulp8PuYAvX19YVYLGa9Z3dOfXFzczMQ6BhXXUbcU6VqDvuFE+htGlqa6G7b7E1vQSmZCG3JJ7hV+T20F+eh5sgsA3lSEXf7dVsTIk3+TOWlE7h1YRYSIuegqbX/f8ByArWewSjQsLAwVsY2ZMgQq0VqKoYOHUrLNSQkBHK5nJWhenp6dpmxWgJzbi+1JYZ5PeZMXuIY2HACBXBz1xY0v/II8sePQMo9IyEPEePXTYFY+800ZO34HBu+exknz50yKUdKoh+JFmDJbyuQU3jS4Puq0jW4mf88Nog/waGcNFvfcpd0JtDly5dbFYOFwSRQUwMRJk+ejAfHu2LGX1zx9ZPOED/Lh/hZPnbMEEA6U4CkNwUQTeWzwtedD+E4PtxdzJeqk5MTeDwexowZg/Xr17PWLbvTESyXy1m/5/Of/gr/DezzTWUybi/4YGfQC1R74ghaJzuh4UFHpPB5SOKRSJn+MH4NWw9x9GZs3ReJi5cVSL2Q16lE005lYd5PizDrOz+sCP0VybIMlFVXQFF9AVdlzyLjx/vx3e8rEZkUb+vb7pKuBGoJmZmZ4PEGz3/VBotAxWKxWWd/GgsXJx6E44gw/aYQgSa9KYB8lgMwn4RitgOkMwWQeBHZ+kziw+Nuvtm/QyQSdevemO+1KmE6Zn7+IP1vZ2dn7lBwiqtXdaFU6qKmBrh4sXtRVcV+z+Zm3e/qB7scBs+nmglu/OefaJ3shMK7HGh55jgL0DrZCYp/eGLR6iUouVSKxJJc/JF/GIWVFzqVaJGiBCHx4fhItACzvvPDvJ8XIX7PMoQvexbLfhchMDgIcRkHbX3bXcIJ1HoGukDVarXB1pU777yzx0q1zg5ErgGP8yHxEkA1VydVzHeA8mMi1iBPATzHmhaqp6en1aeoMNdWH5gyCsFZQvzt+bs7XY8d0Fy9CtTV6aR44QKQn280mo8UoTT+IuTRZSiKKkNBeAWSV9UgQVRLh2RZLfYsrsOexXWIWXIFO75soCP8yzrsW1aN7PUVyF5fAemaShzdqDD5+yCXs2Xb0gK0t3d5Sz3B4PlUM4L2fIHR7LNmoiNaJzuhdbITyl+fisJzRJ6/5aVid9HRTgXK7NDdui8SX6wNxPItaxEYHITA4CAs27wG5dWVtr71LuEEaj0DWaBqtdpgUpDn09OgSlwI/DYGWOtAh2qlA6TzBXQkfSqA6FU+RK/y4fsUH8KH+HC7d5hZUnUbyYPfFD6iXxFAPY8tVNVcB4S9JIDPJD6GCAyF6uvra5FI9Tt5Z37+IIKzhKx5uMa21AwYbtwgsqysBIqLWbJqzDiPqoMXURBxCXnh1UgXX8HhdXVI/qUeB39uQPzyRjqiFqsQsagZEYuaEe7fjM3zdbHRtwXi2a0Qz27Frx9exU/vXKdj+ZvXEfiKLvw91XQsmNqGeY+148tpbfhyWht+eK0ZK95QYdtnV5C44hKa0s/prvfcOaCsjEj16tVeeVSD51PNCDc+egWtk51QfM8QWp7HhwtoebZOdkKOswCZY0YiYttq/JaXit/yUpF2Id8siVJxuuQMkmQZiDm8H3VNDba+bbPgBGo9A1mg+ltVfP71DtShHixxWhPypXdAuvp1BH37JXx8fFgdsPrhOowHn0mk5MsUKSXTkBcEcBvFFqmzs7PZJd2AgAD6dUMdBVgZ44llkdNY7xcdHd27D7ovuXmTCLO8HDhzBsjPh/Z0AWrTLqLsQAXyo5TI3VmL3IhayEKvICu4no6UtfVIXk1CX6CR31gn0GVvmBboF1NvYt5j7XR89FA7Zj9AYtYEDd4Zq8U/xmrxoVs7vpx6Devea0BxVIlOqhcvEqHeuNEjj27wfKrpcTN8Iy3JTEc+LVDFuKH015liTeLxkPfnsbj4j6nIDvwEZSu+RMEbL+HczyKUlpd0KdFz5cW2vmWLsEigPB4JE//mBDow0C/b+vr6Aslzuy1Pg9jzMlCeDIVCAYlEAj8/P3h4eJiUaZCnAMqPHQxkGvKCAK7DDMu6Xa1d+vr60j8//uERCM4SDsz1z6tXgYoKWi4tR+WoTqvExf3VOB9fg/PxNSiKrUFuRC0d+gJNXmNaoFHfNJsU6G9WCvS/T7IFSsmTKVAq3hh5C68NA14bBrwx4hZm3X8Tv75Xj9rEInLPFy4Ajd07WWvwfKox6CgrRuujd6J1shNqJjrSgkwfwqfl2fCgIw4LdPI8LOCh4UFdabfUVSfXdEcHVIi+hqpMDM15bzI7l9o/evZ5tMk/wrbdImzbF4WSyjJb375ZWJyBUtLUlyk4gQ4EQkJCWCLy9vYGNGqDsm2PRtR04FImfQ0KhQJisdioTF2ceBBN5Rusl6rmOsDXnZ2Nurm5dVrSZWbZkx93MVj/tPsJRDdvAiUkK2vPPYuGLAUUKdWoSK1BRWoNSvbVmC/Q1bo48FOjaYF+1cIS6IaPdQJd90EnAv279QL1GgFaoK84A0KeLr5+6iqyfy0nIj171uoS7+D5VGNANQ61TnbC6VG65qGzox3orzObipJ4PJS6DmHJNX2ILms9PYq87vqHo6E98bDxMYBFMxAd8zU0Wo2tb98srCrhGpEnwAnU3snPz2d129JHebUoek+ezEh4h/wuvWvy8fGB8+1tLEyRBnkalnbDXhLA2YEh0YkTTUqU2UBECfSOEbp9rXY9QKGlBSgoIOuZOQrU51ShNusyLc+K1BoUdyLQY1tNC3T/T+ZnoEyBrtUX6Os6gS6dYb5Aff6kNSnQvzuyBUrFp3++gYu7b6/zXr5s8eMcPJ9qt6G2rRhrHqp/gGSYzQ87sbJP/XXR3JECVtbaNEn3vWuvjsTN9IcMBNpx9nlUJU219e2bDZeBWs9AEqj+kWUuLi6Qy+Xkmxp13wh0rQOwfjhwYpXB9SmVSgQEBMDZiX3yiudYPmtLDOaTzl0XJ4ZEJ/zJ6DFp+gJdlTCd9d6WHvTdr8jLI/LMrkR9ThXqc6qgPFJtUqDnYpV6Aq3TCfSPzgVKydNSgX7XiUD/84Rpgb4/3nQGakqgQh7w1kgtKiVyItHWVose5+D5VLvN9ZnTjGaZJ0cIjK59pvDZpVtmyVd/zbR1shPO3z0E2SMFuJH0oE6exd7QFM3EgT+es4stLAC3BtodBpJAmQ01RuURNb3vJLrWAdg+BWiUG1ynUqmEj4+PQTYa/YrAQKLMn/F6ZYbBe+kLdMAMUNBqgbw8aPPPoPFolWmBJlSbJdAjv+sLtN6kQMP0SrjrP2rVlXBndSbQGyYF+tlfOxcoJc+uBCrkAStea9Kti1rA4PlUA6A5vI8WXf0DpreuZDvpyrPn7x7CEuTx4QKj0tV/z+xhDtAkeKP93AeoiZuA5JUPYeX6xQgMto/xX1wXrvUMFIHqH1Tt7e1t+EMFm/pWoFQ2mrve6DVLJBK4jr2XJTz9kq5oKntNVL+jliliYwK1dm+pzbl6FTh8GB15hajrRKDyvaYz0KNbTAt034+mM9DtXzabFOgafYG+phNowMvmC/Rf97dbLdCoL2uAU6dIhm4Bg+dTrU1NZ5/ND5PtKZQIc0fqRFg9YSirPNv8sE6QinFDWZkpVfLt7D1PznwYP4oXsvaB2gOcQK1noAiUmYnxeDyMGjUKQqEQIpEIEomEiESjBkLu73uJUmujbYbdsPoHYvN4pMGIKVHmAAZXV1fW0WvMLlzXCcMMBEqXsO2NsjIgLAxIScHV4yWouy3QmkzTAj0bwxZozmbzBBon6oZAXzUt0PmdCXRcJxnoUNPy/PW9euDoUSAyEkhNteiRDppPtbbNq2nZnR2tK91mDGWvYRbcqfte8T2ms09mw5H+e6YP4aPhQUc0PTIcP6/9lpbnmohgFJWX2PpRmAUnUOsZCAKVSCRGt40YdL+6uED45CSIXuVD4iuAIrCPJbr1IeCK4QlHxgY+iJ/VZaL5/2SXcsViMf1a5kHeQx0dsDKGLeNvFi/syz9Fj5EnUQLbt5OIjYU2W4bGnApUZ1w2LdA91gk0dlkXAp1tnUD9PHQC/XSKaYH+496uBfqfR6/hxMYLQEoKsGsXNNFxUJ2ybJfEoPhU67hcQW9bYa59HhawS7fM5qHDAh4r+7zi5mgyM62eMJRVDqbWRTPef5EW56Xaals/BovgBGo99i5Q/cahsWPHQiQSwcvLi/V1k1K9gwfhQ3wEvMxH9GwB5It7WaK/jQEuGh5Yr1arDbJo2Ts6iXo/oMtC3dzc6NdFR0ezXhMYOhWPPD2a/rej0xBIJJK+/JN0m6J8YLLTLez/XKqTaEQEEBuLm6lZqE2/iIpUkolS8uxKoJl6Ak1Y2WhSoKFfsAUqZgh0tc81lkC/ZZRwlwg7E6jGtEDv6TAq0JcFwEdubSjaehY4fBiQSICYGCjT5Kgq70B15S2LnuvA/1RrU+P6v55nZYuUEJkSbJ3shMr7dSXawrtMZ5jMddGmSU7IGGq4paVq6lj8ICazb3MKT9r6KVhMVwLNzMy0KDiB2g/62ae+LFSNtZDuXwbRV4/C++/3wG2cQ5dSdR7SB1It2GRwL0qlkiV9t5E8ehRg0pvsLJRqDlKpVKyvv/fFJKyM8WRtZaFKvz4+PkhKSuqTv0t3aFEBk52BiTxgzqOXkfftASLQXbt0kZCAmylHoEyUo+zAJcj3GhFoSL1VAt22oBOBvs/OQJlDFBbrCXR+JwJ97z6tgUBfHw743N+O5a+pkL22lJRq09NJ1nnoEK5IS3DxjAYXzwOXK4AahWUD6gf8p5r6648M5GkqisboJMnMTFsn6ySp35XL3NLCLAdvCvwcgcFBEEdvsZu9n0w6E6g5pT1jMViwd4Ey1w9dXV1131DLgfIPgLzhQK4DK1RSB0g3CyCax4fPq3y4u3X93wfnoQJaqmHvC5C/UNB9iR79weB+9DNKqqlIPc+BNakoICCAfg0zc3WdMAzBWUIsi5yGB6aMMnovnp6e/V6k4qU3MZEHOt7/Sy1i/Y6jbcceItDYWF0kJJD1QKkU9YcKoUgoRVFMNY5trUV2cF3XAv2+yaRAN/lZL9DP/9ZuVKAfPXgTc//chnl/VSNwxlXEf6dEcVwFGTRfUADk5gLHjwNZWVBlFECepUKhrAMXz4OOKsUttJ61bE75gP5UUwd8arY8qS0qJ0cIWEMT9LeuMBuOmBlrEo+HqvGkdJs45zV63dMeBscbgztQ23rsWaD5+fksMcyZM4d843KgUXF2FupjRKpBCwREqg+Yd8i28JG74P+Ss/VSNSJRlhCH6wbSM8u4Hh4e9M/rS5caKB+cJcQ3IU/gzU/cMHHyXQbX7u3t3X/H/Gm1KF2VgEChHI8O08l08lAtFjxTgcjPTqMqOJEIVCIBDh3SRUoKEWpqKpCVBRw9iuuZp1EWV4yyvRdxcuslZP92Gem/1mLfygYkrKhH9JImRC9pslqgP7x1FSveasUS4XUsEV7HL++2YO37Tfj1AxVS1yiR+msd8nYryQCE2lqgoQGoryezbisqyNxbuRzXTxejLKMGuanXcFKqRb4MyJcBBSduy/OsFpezKqHZGQ0UFlr0SAekQG/V17KmDXU3mN231Ppm0yQn1jSiojGkdJv7+t9oeaYcz+z6YvspnECtx54Fqj8snsfjIWjRQxaJs0uphj8M8Zql8PX1NTnj1kCqj7vB/60HEDZ7hHlS1ZOovhCpQfTiZ9llXGY3LvPahjoKMPPzB7Eh7QVapMFZQvhv8MCTz/yF9R7u7u79dqvLtfhkFG46hpZN0Yj9dza8J9WzstKJPGCqixqfTatGsG8xZKuOoy4yjS3QtDQiUSqOHwdOnCBx6hSRUGEhyfyKikgWKJeTk11KS3VRUQFcukSiqopI0Fg0NZFzQM2Im9X1KDnajFOp13Fk/00kx91CZhKQlUpCJiXyzD92C/KsFjQnn0RjxCHkbClCzZYDRL4WMCAE2nG5AtoTR6A5vA9togW4OnVsj8mTai46PcoBBXcaH/WX4yxA88NOuMxY9wyJ32GXpVsKTqDWY68CVSqVpgX2JB/yuJ6RKB21ur2cUqkUYrHYbKnKvjBDonp7RZlroX5T+EYHK0ilUvrnFQqFwakwd4wYgqkz7sWbn7hhwZrHaKEuXPEe6+e6mrdrM3JzkbYhD1GbFCjalIWcLUVQ/JGMyLknMcdDaSBTZjw6QoPnXG/gwycasfL9aoT5l6E67qRpgRYWEnGWlJC4eJFIk4qaGp0k6+vNlmT9xVbkZaghS23DgV1aSHZoERN6C7E7gNgdQHwEkByvC1qgKbeQf/gqqtNL0bJPipywCzgZega7N1XjQKQMbaGRZE6wBdi9QNs2r2Z12PZFMEcAUltWVI+MwPofvqK7bpta7fNDlIITqPXYq0CDgoJYEpj++EgDcfl/wIdifw9KtGIu0KE2ej0ymQwikQgvvPACHB11o/rcRvPMK+WuHw6UJ9Pvx8yuheP49LB5VrYdxB50YmzCkX48P3Mc1iU+hw07FrIGT3h5efXq38sqlEqc3rgdH5ZsRPEmKbK3nUFUaDkyNxdDtu0cLu9MR8o3RxH4ahleHn/VqEjdBMBfRupiqisw7T7g2T914O3H2vHG37R4429afP2Pq1j8wXUs/uAGFn9wAz98fgPL57Vh+bw2/PK1GqsW3sSqhe1Ys/gm1n+vwfplWqxfpsXWXzRYtbgDK/1vYU3gLaz7/hbWfHsLvwQCv/+ki22/Ats3kIgIhoFAk+KBtL0anDmsQl3WBdQk5iMz4hIKos9j97YrOCDJgSIiG5sPSLE1SQLEx1v8OPuHQNvU0J440mncqq9lvUR74ghrLF9fBvMkFqqkG+P3Lj0owd62rBiDE6j12KtAmZmf0PN+INcBYSIBXMcYSsNbyEeYSNAzEr34Bi1RuVyOkJAQeHt7m9wyE/Ay37ItLrdH/zGPY3N34dHbWVyH6yTq6+tr9NnI5XIEBQUZbIuhYoyrM9YlPodvV/6H9XXm/tJ+gVaLul+2Y3beNlRtSURCfCq8atbg5NYCZG4uxt5tlQj/vRUpmxUo3nUaBVtysX9JPuY9U4tHR2g6Fei0+4BnJwLCySRedgfenqaLfwmBWS+TmPM68O+ZJD77B+A/WxeBnwPf/5fED/5AUAAJcwS6L0qL7ITrqD6hhCLrEjLj6pG/rxKRW64jPLYc6TuqUJdwDOLMNKzMSUBb9F78lJqGA/H7gOxsix9nnwlUe76AlFg3roQ64FPc+OgVXJ0+wSJxXZ06lryuh0u0lkbTJDJUgdrOIv/7X+h1T3vcsmIMTqDWY48C1W8eClmqk6NK6gD/D/hwGWk8A3t0Eh8BvnwELRBAuplEZ8LM3yWgm4tE8/jwms6Hp8doo+9tLCxuLIqaDmjUBuug1LB55lQio+MKjSCXy1kDF3g8Ht78xA3hx9/BtKen0l9jdTH3F2JiELcxBY1b43EsMg1vlG9G8fajKNp+HAvPhCJA/jsSN19CYUQhUkKrELG5CSnbL6M64RRyIhXYs7wcK31qMPvpZjw3/iZefkjT5wLdtPoW9u7QIl3SjrM5alwsuIac1OvISb6KnEPN2BGqRszBS5Al1KL4UCmSpKfg3LECRTHngKQkrD50CuL0Q8Du3TgSfhKKzSnAuXMWP8peEaj2fAFu7toCdcCnNssS+ypUU0bil1VLEBgchMgky0sA/RVOoNZjjwLVl4EyxVB8KqkDQpYK4Pko32zZdSc8PDwQEBCA5557TiekkWaWb/UjKxAKhYL9fxJeII1EzPNCmZ245sCcdvTAlFEIzhIiaNM81u/pd9tbKiog+yEFLeJQ1G3bh5jdMjTuPIi2qDj8lJqGf5RugSy0CNfikhCZlA1P1VqkbL+MtqQMpIRVI2VXKSK2NWP31lYUxJdCFnMJxYdKIdtZjt3LqxDzYw2WzL6Gb2Zdp0u4vq9q8OlbWsx9owNz3+jAgn9p8d9/deC//+qA/4cdWPLvW3SsCejAll+02PyLFqEbtDgQ3Y7jKWrkZ99AVfE1yDLbkJlCInFfOyJ3aLEx7TIKZCqcPNyMzP0tEFemwOvqJhQevASN7BS2xZVjjHoVEWhiIo5GnUHhrmxg1y6kh5RAEx4J3Lhh8aPsMYFWrFwOuedjKP7TSIMBBQM5Dsx9C4HBQQgK3wh1m/G1HHuEE6j12KNAWeXbqV2XXee82bMS9XyUD9+3+RAHfc467UStVrPWFf2esaB8qx9XCow2EjGHy7u4uFj03Jhl4aGOAgRnCfF7xt9Z1+zv79/Tf67uodVCERQNzTdLga1bsfv3enqYQnp4Pn5PlKImMh2Ij0f8gRPgYTn2b60FUlKQF12M/5Rvh8fVtTgZo8CFfeexe2srkhIqsG1vBWJDW7AlWIMziVUIDbmJ2B3XsSVYg93hasTuvIGirAZk7m9BbIQasVE3dRGtgfz0dcRGaxD8xy1E7G5DxO42pBwg38tMaYMkVoPYI/XYlFuGvGNqFB6/gZNZahw+VwMeliPiVCkaz1aj6kQ1vpOdwmxFPGoy5MDx40iNqkZsejZaDmYBhw4hL7wQpTuPArt2QbEllQxXsIJuC7RDrcbRKY+w9kMeGyawudj6IpRPj8OyjSsRGByEwotF3X2U/QpOoNZjbwI1yMxWPtXpNhSfV9ny9JrOhyqT7PkMWcruap0xjQ/RPMOgSr3qY3q/o/B+oF23lUC/7Cqd341hCzufYDUSeY7lG93KYuyMUFMwBcrj8ejtLU9N/6vFZeG+RJOYCvj7Az/8gMLNMlqgxduPInHzJXqgwtndufhfYTRydpQCycm4digTP6UfhXPHCrQYkp4AABUCSURBVMRuawayspC5qxo+DZvBw3IUpsiRd7AamrwzSNndBFF9LJxvrYRccQq7w9W4VlyFUlkd9u+5AYlKBteO1ZA3FGN/fDs0Dc3ITGlD6ZnrcO/YCNdbayA/04rSM9dxraYFu6O08NKEg4flyElvQ1tdC67VtCB8byt4WI6Yw7Wku/fCBUTF1uNASilw8iRw7BiKE+RI3K4EkpKAgwdRt+sw6iKSgagoaEJ3kNdZQbcFejksjCVPU8eADcQIX/QxAoODsG1fVHcfY7+DE6j12JtAxWIxWyDlaSbl6S00zDw9H+XD710ixuif2TKyqtGoSjesndkBa3X5lhEBn7+ryzadeJ2O9DMHppDHPzyCFuhjT03UZfRCYW/82bpHczOwdCng7w/N+t9pgWqi9iB9Sykt0GtxSYjd1ICauKNAYiKQmorDuy/gD1kSMqMuA1lZUBw4iy8KkuDcsQK7dzRBc5psYcmMq8f/XdkJHpYjNLMYmQkqegtL5PabmF+VDB6WQ6yQIe+YGmhuxrWaFkTu0GJM+xrwsBwJB69D00C2r2SmtOGr4qNwvbUGOelt9LaWzJQ27Ck/A1lKC6BQACUlyIxvQN6By2RrTXY2NOlHkLmzkgyFSEgg97drF7BjB6B3nJ0ldFugRX5+RgVq7DSTgRSlz06kG4dq9DqEBwKcQK3H3gTKXMej1wDLPzAQm3ihwGQjkanoqqHIaOQNBzrUPVu+vR3RX01hXZ9qruFeUHPXLNVqNVxcXOjXvfzP8bRAx7npRv6Z6uy1OTt2kCz0m2+A8HBaoi1RB3Qj/eLjkbitmojntkBL4wsg2daAuuTT9DCFlLhKxB7JRV5CJTmYurAQjceKsT1Rgfcad2JnqBqa4lJaoKWyOoSn1MJNuw4Jh5ppSaK5GXnH1Ag9XglxzQnIMnWivFbTgoiomzh+vg6Kc9d0X69uxo5QDapOXyFHtpWUoOpIGYoOKejxfUhLQ1tiOrmP+Hhgz+3xhdu3W3wGKJNuC7Tg4zkmBUrNhz05QoCiMQ5QjBvKOkPTnoPKPg/lpHX3EfZLOIFaj70JlCkBer2uXWlydJ8yxQFJG0kHrd+7fAif5MPZ0bhArd4zWrfJoHxr1vCELkK6wJn9nu8IoJjN3gsaFhZm1nPTz9y/CXkCwVlCrEt8jvX1freVhUKppLNQrFihGyofHc2ai9siSWeN9NMkp0GyrQGQSmmBZkbXQBLeDI3sFJCbSw9SSNmjQvreZuSl1AEXLuiGKFRWYndEOxR5Tcg70soalKBpaMaOsA4k7mvHtZoW1vcyU9qwO0rLHq5QX4+UhBt0+RbnzwMFBWg7dpoMjz9yhExQSkwE9u8n9xUdDezcSf5PhBXNQxTdFmjet0s7FaixSOGTddKiMQ4oGTuEniFrL1E1dSy957P1+rXuPsJ+CSdQ67EngepvX2GdvFK3ySLpyeN0A+UpsRrr5jV3b2hPl2+x1gH5C/UmD80knbiWClShULAakpjl2/e+mMR6v359APeePUSg/v7Ahg06ie7erZMocy5uUhKQmoqWQ9mskX5ViWdI9nniBFl3vC3Q0vQKRIa2QXP+AplGxJhEVJqrQvAft9B26YrBtKHSM9exP77d4OvXalqQmdLG/nptLTQVl4HycvI7zpwBTp/WZZ+M01dY2WdYmMWzb/XptkDPxe2xWKCmItORna0yTz3pT7H3s5kDOvsEOIF2B3sSaFhYGLukqT8I3Ugpty9Cnftgj5dvsdYBikC2LKmZuC5OurVdPz+/Tp+ZSqViDVQY6uiAZZHT6Oxz1Gjd1KT+2EDE4sYNXRa6cCGwdatOopRA4+KAgwd1EqVm4lKD5W+H5thJ3Ui/2wLV5J1B1bFLunF+zFF+SiWKZC1klJ+RkX2NFa1Gv84s90KlIq+vrKSHx6OggEicmX0mJQH79gExMeTedu4ka6Fay44v06fbAm2sq0WSgN9jEtWP9CF8OltVjBuKK262lWrTI8Pxg1g0oLNPgBNod7Angfr6+hqufzLpUAMlL/e5QJP+YB8blvRpDxx1ZkSgYS8RgXrcbd4wBZVKxVoz5vHYJ7V4vs6enpSfn9+Lf70e4tgxIk9/f2DxYt05oaay0ORknUAZZVwcO6YT6O11UIN5uAoFS6D0LFyVyuxZuPrlW9TUkPcrKQHOniVrmrebh+js8+BB8n8Edu8GoqLI2mddXbcfXY/sA018YFyvCdRUHBsmQOFdDii7r2+lmvH+iwgMDkJcxsGeeHT9Fk6g1mNPAnV3dzdc/9RHqwLOP9GnAvWdOYy+LrNn33ZDoD6TdAI1NT1IoVAYDLp/7cMJJku3IpGo9/5wPU1IiK6U+/335mehhw/rBJqToxMoYx0U58/rBFpebnyYvLUCra0lJ7ncbh5CYSG9dYW19rlvn67zNjzcqrF9xugRgab895M+F6gpqZ4dTTJV6mDrno51Py4asJ23TDiBWo+9CFSlUrE+8P/973+bXq/TqgD59L4p3x5zgMuoofR1WTT71kqBMocp8HiGH4thYWGsZisej4zuo+T55idurO9Ne3oq62i0fs/Vq8B33+kk+uOPhg1F+/YZPx/0yBHDo80Y66A4e1Yn0LKynhNoY6Pu7M8LF8govrw8cg3Z2WSNNjlZl31GRwORkeQ/u9E4xKRHBFpUXoKM4Y42F6h+ZAzl4/QoB5S6DumR9dSCV6YgMDgIv8Vs74nH1q/hBGo99iJQmUxmtHPW2dkZQqEQAQEBiI6O1km1Q01OT+llgSZtZDf6WHWotomQLza+BhrygsCoQPPz8+Hp6cn63rARQzFr0WR6zVO/bDv1mSn991DtzigqAhYtMpTonj3Gs1BKosws9OhR42VcY0eaUQdhWyvQK1fIe5SVkTIxlX3m5JDSMlW6pRqHoqKIQBsbe+yR9YhANVoN4t971ebCNEeoRWMcrN5KQ21dKSov6YnH1q/hBGo99iLQkJAQowLtTKoikQiSXT9CkTKx98q374zvlfIt1jpAOt94F27YS+yv79271+jJK488PRorYzzpw7THuLK3xTzz4qP2lXnqk52tWw9lSjQmxlCitztyDdZCqSyUeTYocx2UEijzEO3GRsvkqVKxs8+zZ0nZWCZjl2737tXJc8eOHln3ZNJjs3AzTx9D2oR7bC5JcyPbiY+zox1Qeb955V5qcEJQ+Ea7PijbXDiBWo+9CNTf35/+4J9470hI5wsQ9r4Avk/x4Ta6a6m6jLoDwqlOEM3jQ7JW0CPnhKqLZsLF5c5eKd9irQOC3nJk3YNqroNRgeqH64RhWLDmMQRnCbEqYTqmzrjX4Gfm/tfbvuVJYUyiUVHGG4qYpVxjWWhBgWEZl1oHrazUCbShwTKB1tWxs8/8fF3p9vBhIs+EBCL+qCjSdVtV1eOPqscEqtFqsCYiGGkPutpcjtZEpiMfBXeSpiRjQqW2rgyU48q6ghOo9diLQJndpM9NGQv1KrZs1KtIxiaeKYD3X82U6kgyG1c0j4+kjQLz94GefwJoTkZSUhLr/XpieAIzhI/rRuwxzwR970Hjw/H/NGEc5ix1x4a0F7AschqmzrgXQx3Zsn3gz3fjiKyfnbjSXfQlGhhImm86Ww9NTzfMQpnNRMXFhmVcSqD19ZZnnwoFyT6Zpdv0dLLuuX8/kSc1MKEX5An08HFml2qrsWzzGkTPfAlpQwU2l2J34uQIAX1Ydv2jd2LZxpVYtnnNgDpxpTM4gVqPvQjUzY3d+OI2mgf/5/mdSku9ygESXwFEr/Lh/Vc+XM0Y7ec6xohUzz5E9pgqVwFqXeMSc1tNTw1PoK994zi43KnbHuP/GJ8W6Ev3swXq7e2NqF0RiDjpg7miRzD5cReD+xo+0gnf/fiFDf+CvYy+RBctAjZv1pVyDxwwLOVSDUXZ2bpmIioLPXfOcDtLdTURaF2dZdnnpUtExGfPklJxTg6QkaGTJ9Vx24vyBHrhPNCSyjKsCBVj+ToR4mdMQ8Zdw2wuw+7E6VEOyHrv2QE/OEEfTqDWYw8CVavVnUrP/V4eRK/yoQjsWkyKQJKpil7lw8udD+chZkjV1RXe3t4QiUSQSqVQqVQGs2V7angC1joA64cjZPW37Oakfwpogc4YzxaoTCbDzFnTDdY4eTweRt8zEt/98D/7bBSylNJSsq2Fkqi/P7BmDVlXjIvTZaKJibpMlJIota2F2ZFLrYWW3p6Le+mSZY1EKhWRbmkpETIlz/R0IvKEBHJtkZFEpL38v8VeOVC7rqkB4Qf30MPWV4u+QsQ/X0PS3x5CyhQ3ZNw1jA5bC7KrOCzg4ffv/4vA4CDUNTX0xuPql3ACtR57EKj+CL83H3CE6ygno7JzG+MA/+f5FnXDKgIdkPSpAP7P8yF8iA+XO8yTaq+Ub38bA/XFVNb7ez71JPDlcFqgz93X9fmmkyY/gJCQkIGxzmkJGg0Ze8eU6NKlQGiobk304EF62DxLotRwBaqh6MwZwyyUGqjQ1GRe9llRQfaW5uYSeaalEXnGx+u2qpw71yePplcESlFeXYndqfuwbPMaWqbmRviHbyNtwj1I5ttWoEeGDx2wR5Z1BidQ67EHgeoPapfPIiKReAngM4kPZwcTkrvLGT5PDEHIuwIoRZaJTBHogOjZAgS8zIfnxM6F1WPdt9unAFcKIBKJWO8vkUgA8cu0QN3vMn49Li4u8PPzg1QqtfWfzPYUFpKTW/Sz0ZgYIi+qO1c/E5XJiETz8tilXCoLpbpxuyrjNjaSny8uJrNuc3LI7zl4kIg8KoqUcHtoj6c59KpAKTRaDcqrK5F5+hhSjmdi274obNsXZZZIl68TIeb1Z5E24R6brKtK7x+NwOAgnJaf6YtH1W/gBGo99iBQ/ZNEPMfyEf2KrqSpmktk6uvOh4tTJ6Xe+0fA92knhLwrMKvcqx+yLwQIeVeXqfZo+TZ5LtCmgkwmY83Vpc/n3DkXmO8A9TwHOAp093TnnXfC39/fonNBBw03bpASKXO/6JIlwKZNpKS7fz/JRKlxf9T2FioTzc0la6KURKnBCtRaqKkyblMTyVjPnCENShkZurM9qfF8Fy70+ePoE4FaQ+v1azgtP4OQ+B0sof7+1SfY/8xfIR0zok8EKnlp6qBqHqLgBGo99iDQ/Px8o/scXYfxEORJjviiZEodOh3wOB9uXTQNOTs6QPjnOyB6lQ+Jr/VSlS/uhjijpgM1xwEAUqmUJU9XV1colUryEL57yOgQBU6cZqDREIkym4yWLyd7LePiiNiYc3OlUtJYdOwYWRPNzycNQMXFuq7c6moyHMFY5lleTsrAlDjj4kipdutW8nt7cDiCJfRbgTJpam1GTuFJA5n++PMSxM+YhvQ7hvSaQMVL/BASv8PWj6DP4QRqPfYgUAqJRGIwHJ0Kn0l8hL0kgHoeW6byWWTfpM8kPlyHdb226TxUAOFDfPg/z4foVT6k860Ta1frnEieS4tTrVYjICDAYI2VHu5+O/vEfAd43KMTqNGB+hzG+fJLYM4c4NNPiUC//pr8Z1AQGUhPrY8eOKDr1KVEKpMRIVLZKFOkly+Tcm5dHfnaqVNAZiZ5nz17SONSbi6wbRvwyy+krMwJ1DzUbWqUVJYh4Ugy1kQEs9ZMe1qkGWPvHHTdtxScQK3HngRKIZfL4evry8rWmOH9ACnx6memmO8AxWwHRL8igP9jfHiO7boZhyW1kTwIHyLlW9+niGCp7FU6v4tY4Ayp6HFIwwIgTT0AqVQKsVgMPz8/g/twd3cnIwnLj7PWPoM82dlndHS0rf8U9kNAABEoFR9/DHz2GfDVV+R7P/9Mmo+oU1327iXyo4SakkKGHkilRJAymS4OHybl4Lg4XWn41CmSiZaXk/VTpkA1thluY3cC1aeuqQEJR5IRFL4Ry9eJkDrh3h6RZzKfh+Av5iAwOAjl1ZW2vs0+hxOo9dijQClUKhVCQkKMlnep8JrAh2gqH7J3BAYypSL/nwKInyVlX+E48zLV3ghnZyf4f/g21Hu/B356gnWN0a+w5UmvjXKYx4oVbIF2FfPmkaz1m2+AVauA9evJsWLbtxMZ7txJhHvwICnVnj+vE6Z+6AvURti9QCk0Wg1yCk9iRagYu954AYeHOnRLnlH/99KgGRxvDE6g1mPPAmWiVCoRFBRkcIQXq0vViWSn4mcFnQqVakySzhRAOlMA0VQ+/KeOgHDSXXAd6djj4nS/dxiCpjtC+bHhdSg/dkDA4+xM2c3NTbc2ymEe69axs08/P2D+fCLJgADg22+BZctIp+6WLaSsGx9POmiLi03L0ZwoLSXrn6tWAf/7n80ewYARKEXr9Wv4LWY7vl8nQsKTf7FYpNljhmHL/A/o0nBJZZmtb8kmcAK1noEiUCYKhQJisRje3t5dysvjbj78ppD1U+lMgVGJdRaUZKmQeBHhMkP8rMDg56ig5ttSHbbSmSQb9nXnsw7OZpZ3FQqFrR+x/REaCixYQGQZGAj89BMp24rFwMaNZGpRWBiZCLR3L1kDzc7mBNrf0Wg1SDmeSUtw26y3cHDyBBweMxKpQ3RbYdKGCpBx1zCk33kHkv50L0IY4gwMDkLayWxb34rN4ARqPQNRoExUKhUkEgn8/Pw6zU5ZpVQHHoTj+PB1NxSgpYI1Jdywl25nto+RsnGXHcPOzhCJRINvMEJPceUKWdu0VKC5uT0n0NWryb9txIAUKEVdUwMik+ItHuKwJiJ4UBxZ1hmcQK1noAtUH0qoIpEIXl5ecHUd263yq3Ac32R0JcUuS7vu7vD29kZYWBhXsu0pbtwgTT9BQWRd9NdfgQ0b2AKNiyNbWrKyiEA7W980J4qLySAFGzOgBUpBbYOJTIqHOHqLgTCDwjdCHL0FIfE7Br04KTiBWs9gE6gxlEolpFIpRCIRfH19IRQKDYbX92Z4enrSh4KHhIRwk4T6EpkMCA4mIt28max9WivQ0lKyleX8ebLl5WT/Og1rUAiUw3IUCgWam5u5sCJaWlps/efr1+Tn50MqlUIqlSIsLAwikQgikQgBAQEQCoVdhpeXF/0akUhEC1IqlXJZZX+ltZVsWzl4kGxZyc8nUmRGURFZHz11inzfDuAEysHBwcHBYQWcQDk4ODg4OKyAEygHBwcHB4cVcALl4ODg4OCwAk6gHBwcHBwcVsAJlIODg4ODwwo4gXJwcHBwcFjB/wMsvEVo3sRPOgAAAABJRU5ErkJggg==" width="500" height="87"/> 10.9元 38.5元 79.99元 11.8元
(1)小亚带了90元,她想买一双圣诞袜和一个书包,她带的钱够吗?
(2)小巧用50元买了其中的两件商品,她买的可能是哪两件商品?还剩多少钱?
四、课后小结:生讲(方法和注意点)。同时出示课题:小数减法
板书设计
(1)计算小数的减法,只要把小数点对齐,相同的数位也就对齐了。
(2)然后按照整数减法的法则做,不够减向前一位数借一作十继续减。
(3)得数中的小数点要与横线上的小数点对齐
教学反思:
以上是《2019年沪教版四年级下册数学教案:<小数的减法>》的内容,更多沪教版四年级下册小学教学教案请关注新东方在线小学网。