2019年沪教版四年级下册数学教案:《小数的意义》

2019-09-19 16:51:00来源:网络

  二、探究新知

  1.认识一位小数。

  (1)教师出示一把米尺:把1米平均分成10份,每份是多少?

  (1分米\米 或0.1米)

  0.1米是由哪个分数得来的?

  3分米是多少米?写成小数是多少呢?(\米 0.3米 )

  7分米呢?(\米 0.7米)

  (2)请同学们观察这一组数,你发现什么?

  教师引导:小数点后面有几位数?0.1、0.3分 别是由那两个分数得来的?这两个分数的分母是多少?它们的计数单位是多少?

  (3)独立完成并校对。

  

\BECFqjJunaS+O2B+M+X70zCrS3zMvjNKaUocS/yukcaggJgRVGCF94zKsj1v/sXKadWEA0BC1QELU8mzLIcTYW+HdW8Je6FwCXZBC1LJ+Wkvt3UvJXnQdi6CkLM4wlYKBbfKaVlXYGgZZlEbI4mdJ1aVmsS7tVu7IfAJTkELUsn+Zi+3dS8ledD6E1eNLKdtq+uZV+HoOUZBCzMVtQDFECUDYRtSCDMIp6kw/p2U/NWXiDWQyUf+4vK9SH6vj8aggLaoFAYvU8M/DKfutdtZTkQvBr85uQQ66mgUR8xCPn+VIzvj4WyfkdeXYu2rcB7eg7hGzR6WzX9IK0wBkLM8wlelUyMq1rfdu6riVdtxfj8UCC7hXT3atH2gpcwSw3qIn27qXkrioeQNXn4zCgh6Yi+3dxfSzoCQcuyCDG/QbaPvt3cX4u2g/jtPhiCghyDQowXgYuVlfiLkyBwsYaAJenEeigrKKSeBv8FefgvyCY3UN9uat405RCxuQL/BSmEWUC5ggb+vGAIXJpLmGUCMS7KCgppv0PAgnz8F2SR46dvNzVvGjVEbBG8hK7XUF6ob0c1b/lhELQsB/+5+SQd0reb+2txnhBilkrougSyr+nbTc2bRg0RmyBx3xUMQUF2QcGGsmxPglZkkqGQ97YgVrMHLMolwes6oRZlinnPDxC5DaLtw4lxDiF+t77d1LwVJUDQsnKSf/2LoKUlFETo21HNW/JRCF2fQOqp84SsUSnmPT+IqeQouwhiXIKJ26lvNzVvxTcgaJma5F//InBpsax3JN3aUo4LXuLcA4ncqociDw/YNGpRBCpx/zVi3QKJ89S3o5q3kmRRACvb+ziGnQ+yCwp2gA2J+64Ruk6+2yJ1m0YNoRaiEFBZjivBqzJIPaVvVzVrBVHgO1tDXuBRcnyPE7hEQ0mavl3VrCXshqBl6ajy3Im2CyXGWd+OatZUuWIASjpyBXWZPcGrMkg5oW9XNWuFseA7G3L9fyXX/xiBiysoSdW3q5q1RC8INM0QvDgEEe2ob0c1a6o8URE26fBVSjM8CFxcTI6vvl3VrGVeBL85ZZSk7CTX7zgBi9SyqrVxt5Z4AAIW5lCe74687pGGoCDJmtL0nQSZZhO3Qz9V0u6n3TgEfnMKKIrfB2wh7fc/8J+nkf0TS1mmqAAXZRcBGlsqSh2J3BJLxGb573zIugJ+c1RkXTkFbKUg8iB+84pJ/U3fzu7eKlQQ4wTBq1KlAkDbSP/jd/zmVpAXom93d29l2RBiBlHWUWgq7KgocyDSKprwjfLf+ZB1XWxhzrx0GthCYfQB/OcXyT6gacpFCe+gFek3eUnw8iZgify30xYliBozCbt9ASsqyhyIso4ibIP8dz5kewteMv4+y91Ll/93JMOgIMJCQdQBAhfnEL9dpGq5NU25WKjjO7uUHL/jaMuVaipsuXHgCv4LNGRdETMOcmslqaI+e5hFIqo8bW1zG0ozthO2PpGIzaLCmtyaRg3Z10RZ4aQjl0Fjg3h/aEPmld/wn19E0lF5zkSpiyHWDfx+zqMoQVuERuLl8GXByyV58lKaBuGWELbuBmU5ntzkJXM7YRYJhG+E4mR9u7y9aSqkIldz4MaBqzq82JJ1/ST+C4pIOiLPuiHqElHnxG9OPoXxXoiiaCLQx7oFEbhMrHWR4w6rghgxaxbjEEqFyhHtNarK9iTMMp7wDfKq4qltmgrI9gG/n8XrEk2Flhd93w/1L5kGBREWCmP2E2Z5g4CFkLBXHkVG1CWQdg4Cl0LAonyyvU9Qtaa5GIhSTp0nYEEJoWsg8295DEYl6aIuvN8ciNwWTVm2bllbe8AKVY4HUbYR+C/QEGUnj22HmnLI8RHleP3nlpFyQlvWVvvuUJyXkON3jKCVWQQuEyWT5bDAUZUnAqX/QghelUZB5AGqnsYoBtHUM38SsLCYkDWiuqQcSlCXZkjhZg5EbIm9pQyyxEuuO9F24fgv1BBlK49qgZpycbZK6Frwn6si+dhF0NhzKy+5AUcJXpVJ4FJx8JscFjiq8sUaFv+FYiYhP/wgVXmxoaLckcQD1/BfqCJsgzgQTw6BoTBWHIbmO1tDnHsg6tJbz0ywRpXnRoxDGAELNETZiB0d+m4aNeT6i/LNfnNVJP96CU0VXgyScVCQwMp1J3GfN35zc/FfIC7o/LDanWVQl4iDS1LPCJi8Z5QSZRtBYawXtx98ojMQBR0h0ioSn5nlhFlC1mUxZViblezKssSTR+I+8PsJAhZmkvzrJdRFLlT/3VtTUeZE6unzBC5LEwe37IXcQHHjqK1WUSaeOjIvi0O1vGdoCN8UKwWz6pK+dOpl8k5iXYLxmVVEyGqxq6MgunZDQ3mBqBuffBwCloDv7ALid/hTmnGn+vHCe17wESJtIvGZqSLMQnz2ooTarWSn5eXGfu2BUFkkH71MeaHrHbzbUKFyJPXMnwQtT8V7hjgYKjeglnlRiVmNrCtiga7PDA3hG+PIvn4SbXivrs9LUncS6yrxskriJap2Q0N5gfidKSekE2pnFxDvGUBp2p14kWZFrp0kdH0C3tPFVr5sb7EIrzbrcpSmi1AW5w6+P0DQslTSzv6pcz5FNbyUO5J29k+CV6TgM0OcQJkbIH4WtfSquQovVuA9A8J/iSPr6m9Uz8t/WzIPCtqLYps4lnSvN8ErUvD7WUOImbg4Yt0erWKcxbSr/wLwn59LjFMQeSFH0dbqv7t3MV2Y7f0bUfbB+C/Mx38ehG+AGJdH7z3KFoJXgO9PakLMkkg6coXS9J2IUwDvdiHYAVtR5XqQcuIioevi8f2pnKDlEGX16H3HuoqjsQMWgN+8QiKtw8i8dBZNhQNVn66qkzVgTUHkQeI8/AlYkIX/fBHwYpwevfdoBzHz4TcXApelE7/Dj8LY/ZLvez2hCF5yfE8S7RBMwMI8/OeJ2vO1wUu0LQSvBN85gpcbh65SmrYL2FozXvI8SDl5kbD18fj+pCJomRiEa4WXTeJYb/95RURahZH591k06prwIq7jgqgDxHn6EbAwC/95tczLWvCfC4FL04nb7kdhTE14EWfLVKgcyPj7dyI2R+E/r4jAxRCxWfTJo/YeZS1KY/vOKSN0TQKpZ89TnufG7aeMVs9Leb47KSf/Imx9HH61zEuExIvfXMFLxl+/U6F2rIH3/6aM5B8UtLIGbFDluVMQdYD0P84Qt92HGMdAYpwekRwDiXEOIPW3P8gNOkJp+g7Jy/3AJC5osKckbQe5/kdJOnKRWFf/R+o92jGIhN3XyLhwhsLYfZQXuKE9/KnmfS4OolEXu1IU70Xm36dI9LpC9CPu81iXAG4cvESOzzFKkneiqXBEexOteZ+LMFSWuZ280EOknTn3yPs8xjGQOA9f0s6eIz/8oHTCpS33vllVz0tp2g5yA46SdORvYl39aoeX82cojNHyYv3PeLl4isR9j56XmCq87EKj/ge8ZEm8nP2dWDe/R+49zsOX1DNaXjwfgBfx9ytUTpQk7yLb+xg3Dl4ixjnw0fLiEESi1xWyrpykKH4v6mJXahaGq+GlxIWi+L21y8uBy+R4H6M46UF4+e9JQUHBHu32yUogayv5aX/nrWfD349s0Z6iVitAah5mf+l+fjvpZz9qafvrn/S5nU6f1+b7xofR5wZear+/quGlVrzf0l//6PP/k+vlQXh5GNeXUnn570hhQeFW2dWiDL6V7b02fSvZu4EXAy8GXgyqqvsMCg6S9G/8/mXwbvBu8K4MGbwbvBu8y0n3GRQcAWfZf6jq5SR5d5SBl/uRg453pfW7kr3bY+BdHzIwY/D+IDLw/ihVw6DgSGmpNR4eX+Pu/hXFxVYK+kIc0GjscXL6Eje3rygpsZH1F1Kdf1fXydjZTaK83FZB3h1RqazZufP/cHD4nLIya5TDTCXvbm5K5N0OZ+cvcXObTHGxgffaYkalsmHnzm+xt59EaamyeC8r0+V9m4K86/L+lWJ5t7X9TNa81zAouJCaakmPHsa0bNmY0NCVgJvezddMTqhUNrRu3RRj46aEhKwAXGXgq2be8/I20727MfXr1yM+fi0ieerbV03kQnKyBQMGdMDIyIjUVEvARQa+auZdy3uLFo0Ux3t5uQ3Gxk1p06YpwcHLMfBeO8wkJ1swcGBHjIyMSE5WFu9paRvo0cOY5s0bERJi4L22vGt5f/zxusTHr0GuvNc4KCQlWdC9uzFPPNGEwMBlKAmksjJrWrdugolJc3x9TVEOSM6kpFjQp48JLVpoA5o8QaqOmbi4NQwYIAbOlBQLlDRwVvLeWHG8q1Q2tGnTFBOT5vj4LMHAe+0wExe35mZQSEpSFu/JyZUPggEBBt5rR86kpFjSp4+JFNBWIFfeaxwUkpMt6NmzLa1bNyUoaDlKAqmszBpj46a0b98CP7+lKAmktDRL+vZtR8uWjQkPX4VcQaqOmfj4tTz9dCdFBoVK3psojneVyoa2bZvRvn0LxQVjpfM+aFAnRQaFlBRLevVqS6tWTQgMXI6B99qQM2lpG+jbtx0tWjQiLEy+wdgQFGQt5Q+chqBQ21L6wKls3g1BobaldN4NQUEmMgQF/cgQFPQjpQ+cyubdEBRqW0rn3RAUZCJDUNCPDEFBP1L6wKls3g1BobaldN4NQUEmMgQF/cgQFPQjpQ+cyubdEBRqW0rn3RAUZCJDUNCPDEFBP1L6wKls3g1BobaldN4NQUEmMgQF/cgQFPQjpQ+cyubdEBRqW0rn3RAUZCJDUNCPDEFBP1L6wKls3g1BobaldN4fVlCwQ/DmAbhLfeCMKA/9z6s9GoKCrKX8gdMQFGpbSh84lc27ISjUtpTO+8MKCk7Ex6/lzz/ncu3aYqKjzUlP30B5uY30Xe4EPKkMES7cT4i4r6DQo4cICmFhq6Rf6qQAuaLR2GFs3JQOHVoQFLQCkbr07asmciM7eyP9+omBMybGXPrS9e2rJnInOdmCQYOexMjIiMzMXxCQ6ttXzbxnZPxCr14iKCiNd7CnbdtmdOjQQhr0DbzXBjPJyRYMHix4T09XFu+ZmRvp3VsEhdBQA++1IzeyszfRr58IClFRZjwY786AO1OmjKBhw8dp27YZgwZ1YuTI3nzyyVB++OE1Vq4ch4PD5xw5MoO//ppPVJQZBQVbpN/nJvWjKyJAOOv8bBEkahwURKnJdrRq1YRr1xZTWGhPYeE2Bcia7OxNtGnThHbtmnPp0kIKC+1k4KsmsiE21pzevUVJWz+/pRQW2sjAV01kS1jYypslnKOjzSgstJWBr5p5j4oyo3t3Y0XynpOzGWPjprRr15yLFxdg4L12mAkLW3mzhHNkpLJ4j442p0cPUaL/6lUD77UjG2Jj19C7tyjh7OtryoPzboOd3SQGD36S5s0bYWRkVK2aNWuIiUlzevZsy7BhXRg1qi+ff/4CixaNxsrqU7y8pnD58kJSUzdQXFyZDWocFLKyNvL8890wMjKiceP6NG/eSEFqeLOjlOa9adMGN703aaJc702bNtC7nwf1rjRmDLzr37uB99qUgffmzRvRsmVj6tWre8eQoKs6dW7/s7p1H6Nhw3o0b96QVq2a0KnTE+zc+S3gVtOg4ER+/lamTBlBjx7GdOvWmi5dWtGlS2vFqE8fE/r0MaFbtzaK8t61a2t69xbeu3bVv5+aq1U13pXS71W9G3ivPRl41793A++1p4fHeyt69mxL377t6NTpCZo0aXDHkNCkSQPatWtxzzDRvHlDnJy+ANxrGhTsAQdyczcTGLiMkJAVilNo6EpCQ1fq3YdBylFo6ErCwlYpihutZ10pyb9SFRZm6HeD9KlVXLy4gDff7Ee7ds1rNLNgYtKc/v3b88Yb/Zg48Vlmzx7F2rXv4+w8mYMHp/H33/OpqLAFHO4nKNjrLB5RonS3jShFbsAuYLekHTLwdD/ed6NM71p5IBZ1uf2Dn1Hbcpd860op/t0QnCiRmVv7XGnjjQdVxxoPGXiqqXSZ2YWy+v1hyZOwsFX07GlMgwb1aNGiESYmzRk2rCtjxw5k6tRXWLp0LHZ2kzh8eDrXrpkSHr6K+Pi1ZGVtpLh4G+Ier70GtTsk7msxo5LlCLgSFLScS5cWIsKOvj3VzHdFhR3e3ks4cmQ6hw9Pl1aBK8G/A+DA+fPzOHhwGkePzpS2/ihlu5g94EJCwlq2bv2ExMR1yH+bnrigT5+ejZnZOFaseIeVK99l+fJ3iI9fqxD/DkRGrubQoWkcOjRd2m0id95Fv2/bNpHly0Wfr1z5Hr/88iHXry9WQL/bA46UlFhx8eIC9u//nlOnZlNaasXD2H//6OVEePgqfv11JgcOfM/58/OkLYGOMvBWuyovt8XXdwnnz88lJGQF+flbKCmxRqWyQaOxl75PZ0Sw0A1T2l0Ojnf8zv/VQUGjsSc3dzPe3ksYMaIXCxe+jUjK+vd2b7lx5sxP1K9fl8GDOzF0aBeGDesiDfpyv+G6cOTIDJo2bcgbb/Slb992DBzYkejoNShj4HRCpXLgyy9fxMjIiLNn5yiAGydKS60YPXoA/fu354MPBjNmzABGj35KqgPhKgOPd5Mbvr6m9OnTjpdf7sGIET3p3t2Y4GC5e3dEo7Hj229fZvTop3jnnYGMHj2Axo3rs3r1ewrgxpGSEmumTXuV55/vxrvvDqRp0wasXPkuShhnoqPNGDiwIz17GvP22/1p27YZdnaT0N3a99+RNgho5URlANCGgAfrk39xUHBAo7HjzJnZzJ37FnXq1GHp0rHI/8K1B5woLLTizTf7MXr0AJKSrAgIWMZjj9XBxuYzxNSQvj3eSY4UFm5j8OAn+fTT5ygqcuTq1UU0adKAdeveV0D/OwCu7N37HQ0a1OOxx+ooJCi4kJpqyaBBndi9+ztgO9pZKY3GTgb+7t7nFRWOTJ36Cq+/3pfiYgdSUixo374F8+a9hbhhyXvQV6lsKC21QqWyJzrajP7920vfg9wLF7lw8OD3dOjQkosXF6BWO7F160T6929PYuJ65D2js52NGz+mfv16XL26iNJSV2bNeo1+/dqTn79F5t6VpX9xUBDKy9tGfPwa2rVrweLFo5H/gG8POJOevoHRowdw8OA0YD/Z2Zto0qQ+FhYTkHdQcKCgYAuHD08jNnYNsIf8/C00b95QekqRe/+LmiGvvNKLiROH0axZQ06dmq0I3/Hxaxg9egB2dpM4cWI2ISErKC21Rv4DpuC9T592bN06kdxcB+Li1hAaupLUVEtEeVp9e7yXHNEWL9q58/8YPLgTaWmWCuh7V+ztJ9GnTztEINvHH3/8TM+ebQkPl+/ZA0I7WbTobdq1ay4VD9rN6dOz6dSpJd7eSnntowz964MCuFBebkPHji1ZtEgpQUG8NqmosEM8SXlw6NA0jIyM2LdvKmKhif493l3OgCP+/iv57ruXGTmyNwEBK5D/xevCrFmv8847T/P77z/RsOHjCgkKbgQFLQLXaYgAABcHSURBVKdbtzb06tWWUaP60KtXWz777DlKSmxk3u8uREebY2LSjPHjBzNhwhBefrknX3zxAmlpG2Tu/fbv4euvh/Phh0Mk3/KeCQEnIiNX8/bb/dm06SNOnpzHl1++wPTpIykvt5W5/50sXTqWRo0eJz9/K7Cfgwen0apVE44fn6UwbuSt/0BQcKK4eBsdOigrKAg5Ah5ERq6ma9fWfPbZc2Rnb0P+C3UcABcqKuyYNes16tWry+efPy9V+pKzdw/Onv2Jzp1b4etrSkDAMh5/vC7nzv2MmMrXt7+7SZw1MG3aK3h5TaWw0Jb9+6fStGkDjh6dgXjPL9dB35XYWHPq169Ljx7G7Ns3hf37p/LYY3XYuPFjxMIrfXusiZxIT9/AgAEd2LLlE5Rzo3LHwmICzZs3okuXVvToYYy39xLkvTbEHvBg376pPP54XSwtJ+DlNZNRo/pSv349Tp36UUH9L38ZgoKs5cbffy9gwICOfPDBELKztyAuXnlPxarVtqhUtmg0dsTGruPMmdl07doac/PxMu5/Z9LTN/Hss10ZOLAjFy/OY8uWT6hbtw5r175PauoG5Huj1UrLhTPgSWzsGrp3N5bWhsj56daVmBhzjIyMMDMbD3ihUtnw7LNd+eab4VQuxtK3z3vJgz17vqNjx5ZERq5G/osBBSsXLsxl1Kh+nDz5Az4+q7C0nMAHHzxDbu4Wmfe7A2q1I05OXzJiRC8+/XQY06eP5MknW/Hnn3NRXlCQ6/VZo6DggEj0O6jcXylneG6VUoOCK0FBK+jTx4QPPniGwkJrqe/lC5OQCydP/sDnnz8vrVHYDrgwaFAn3n//GeT7ZO5KRMQqRo3qyyuv9GLUqP4880xn6tSpw6BBndi373vku5JarGY+cWIWGzd+RFHRVsCDuLi19OjRlk2bPkLeCwJdSEhYh4lJc1xdvwL2Uli4lVGj+vLlly9IvuU+5jgAbkydOoLhw7tTVqaEtSH2gDuffDKMp5/uhPaUwYSEtXTv3oYzZ2Yj71kFJ27cWI+39xIyMn6hoMCZbds+pXXrJiQnW6CsoCBvxu8RFIT5v/6azy+/fISl5QR27vxWKs6ghItAwFRcvI327VsoaHukE2VltkyYMIQXX+xOaqolJSV25OVtlhan6dvf3eTKqVM/0rRpA2nQ96K01Ir27VswZcoI5L++QrudyJ0LF+bx2GOPKWCNgrhJ2dlNol69x7h2bRGwnwMHptGw4eOcPTsbeU/fO1FUtJUXXujGO+8MBDwpLNxK586tpAXIbsg35Ggljgx++ulOrFjxLvKewdGVBxMmPEOPHsaUlFgDXvzxx1w6dXqCc+fmIO+gsIP16z/AyMhICgbuvPBCN0aPHiCtr5DvjbdS4tpNS9uAq+tXFBXJ89XyPYKCO+fO/UyHDi0ZO3YgX301nA4dWrJs2VgqKpQyHSiCQps2zZg//3/Ie8DXyoXz53/GyMiI3r1NGDNmAK++2osRI3pK7z7lnD4dKSqy4t13B9Kp0xN88cVw3n77KZ56qgOXLi1A/tOx2r3GHly4MA8jIyMpKMg94LiQnv4Lr7/el0GDOvHFFy8wcGBH5s//H/n5Vsg72Iv932fO/ETv3iaMGzeIsWMH0q1bG65eXYy8Q45WHvz22480bPg4f/01TyGe7aV+n02PHsaMGtWXL754md69Tfj88+cpK9Mupta3xzvJiaQkS/73v6cYMaIXb73Vj0GDOuHra4q8edfKgby8LQQHr2LSpOcZNqwLOTmbZOn9LkHBEY3GiW++eYk+fUzIzt4E7GTu3Ddp2bIx6elKWY3sgFpty96930kLdOT3JVTnOTraHBeXL7G1ncTmzR+zZcsnbNz4EX/88fPNv6N/n3eSI5mZGzl8eDrr1r2Pvf0k6ax1uYab6uREWtoG3N2/JilJ7vvJtRLbDJ2cvmDDhgmcPj2bigp7hXgXC2D9/ZexZcvHbNs2kZCQFToV5fTt7968BAUtx8trCoWFW1EW644EB69g8+aPsbB4nyNHZpCdvVkhn8GF9PQN2Nh8ipXVp9LaEFeUwYwz4eGrsbKaSK9ebXn55Z7k5W1GjtfrXYKCWEXds6exNP3nAmzn9OnZtG3bjL17v0N+QUG7nmJnNdpDZf34W/8/Vxl4t0fMdmg97QL2VqPdMvXudouvvcA+6X+9JO265e/o+6nLDsF1dbzs0PkOdlGVG7msFamOd11W9lE9864y8G5PVd61/e2l41/LjK5/uXi/lXetx+p4kQvv9gjmnRBrhXTHGt1+1163up9hu/Tv9L2Q2hFx/d2J+b3V9PsO5HevElKr7SgpsWbq1Fd46aUe5OYqLii44e29hLp1H2PXLm2lN2diY9fQt287Gb6Hc6S01Jr9+79n9er3bpOZ2ThWrx5325+bm4/j4sUFev4cYtZj3z5d7+MwM7tdVT/DOGk6/8FLcz6svv/99znV9Luu79u/k+PHZ+l5r7Z4CryTP63/W7lxdZ0sg1r4gvcDB27nvXpWKnn/++/5MuS9JsxoebfXe9+fO3dn3qtnSQ68C+bj4tawdesn98WNre0kkpP1XUDKkezsjbi4TL6L99v7fcOGDwkNXYk8Z0hEoa7p00cqNyj4+Jjy+ON18fL6Hm1QSExcx1NPdWDlyveQV1BwITnZgsGDn7zn8Zq36vPPn5emOPUFkjN5eVvo06fdfXv/5puXUKls9AiXeL/83nuD7tv7yy/3lArq6GPdglhEtHbt+/ftu0WLhkRErEa/TymC92eeuX/eP/vsOamYl4H3B+V93Dil8a6VO56e39y39zp16rB//1T0OyvixqVLC2jVqsl9+xdbs1316P1uPDkwbdqryg0KQUHLadGiMS4ukxHThC6Eha2id28TNm/+GHkFBQdUKhvi49cSHW1GdLQ5sbFriI42l/67ekVFmUnvoPXrXa22JSam0mtc3L29R0ebkZxsIQ36+vWfmLiuinfdz3InxcevlQZ9fTHkQGbmL0RFCT+xsWskZu7uOyrKjJISfc8oPDjvN26s1/P5Dwbe9ek9N3fzTeZjYsxrxHxk5GrpJqZf70VF225yUnPvZtKaOrncq6p+JoUHBWeyszcxfHgPvvvuZcTTx0727ZtKy5aNpelLub33EQuiRHJ0o/pzu3dS+c58L+J9l1w+h9a7B5XHgWqlfSd6q3e5QKV7fKmLzmfRaoeOdy8q3xvq++J10ulft1v63UXqY911Ftr35Pr2bc/tvFfX70riXde7gfdHJ0eqMn+rd3fEmi6t993S35PD1L0DVRm51bub5FfrfY/0eeTCTXWfR9FBQSyUWr78XRo3rk94+CrKy114552n6devHcXFVshnwLkdpJQUC8zNx5OVtZHKQjkOnDjxAzNnvsb06a9iajqG+Hg5HX0sBv60tA0sXTpWZ0+tuECPH5/FDz+8zvTpI1m27B0ZVn9zRqWyZeXKd4mMNNPpV0euXFnE/Pn/Y/r0kcyd+6bMtkqKAdzNbTInTvxA5RSlOMZ2+fJ3mD59JLNmvc6vv87U82uq6phxJSXFEjOzcWRmVuX95MmqvMfFyZF3S5YuHXNX3pcuHStL3svLq+PdiatXdXl/S1oHJSfvojz8/v3fs337Nzd5AUdycjaxceNHzJgxkhkzRuLm9hUVFfpeW3ErNx5cvbqQTZs+0qmZ4IhKZYO7+1c3vW/Y8CF5eXKuMCn6fcqUEbzwQjclBgV7wJmMjE2MGTOQoUM78+qrvejfv71UiEMu6VhXjmRnb+LKlcVMmDCE3r1NSElZL3l15/LlhRgbN+Xjj4dhZjae/v078N57T1NYKId95o7k52/h4sUFfPLJMNq0aSpNbzsBLvj6mtK6dRMmTBiCufl4+vQx4cMPh8jEu5gG9/U1ZcmSMTz2WB0CA5chbrhOZGZupH//Dgwf3h0Liwm89FIPhg3rQny8vrcdOlBRYUtY2CpsbD7jiSeaYGU1EW310aIiayZOfJZevdpiZjaOjz8exhNPNObatcXI431nJe8ffjiEXr3akpSkrUjnzpUrC2nbttltvBcUyIGZSt4nTnyW1q2bSA8ft/L+jA7vQ2XHu6np7bxnZW3iqad0ee/J0KFy4L3Sf3z8Wry8pmFi0ox5896kstCYK3PnvoWJSXNMTccyY8ZI2rZthovLl8jjyGxHUlIsOX16DoMGdWL06KekoOAEeODqOpkWLRoya9ZrLF48hk6dnmD+/LeQe1XVWbNeY+TI3koNCvaAC8XF2zh2bCb7908lOtoceYYEe8CZ+Pi1uLl9zYsvdmfQIO1Rry5oNE7Mn/8WXbq0IiXFAvDCw+NrjIyMpPoK+r4InElJscDZeTIvvdSDTp2eoKxMe+qfIz/+OIo+fUykMwd2sWvXt9Sr9xgXLsxD/0WkHCkutmLXril89tlz1KljJK0yFlODjo5f0KZNM65cWQjsxN9/KY0bP46d3ST0W9JZPIH89ttsTE3HUKdOHZycvkQEBQ8uX15I/fp18fT8BthFRsZG+vdvz7RpI9Fo9L3TRDCTkLAWd/evGT68O08/3VE6lvnuvF+/vhg58T5iRE86dGgpVR2tyntKiuB9z57vePzxx6RiRvLhfdKk23l3cvoCY+OqvDdqVB87u8/Qfwnzymq7a9aMp3nzRixb9g7i5uRMSoolffqYMHPma2hfq4wY0YtXXumFWi2Hcd+JgIDlWFlNpHPn1nz44RDUalvABZXKltGjB/Daa32kdSy7+PHH1zExaS7bQkZahYau5Pr1xTLYFVO9angolICoUvL7IJUSq5JNTccwePCTpKRYAu5kZW1k4MCOfP/9K9Jn8CA8fBU9ehhLK2Llkjg9WLRoNE8++YQ0cLpQVmZNz55tmTz5RcQg6U5MjDktWjTEwuIDxAUtB+/b2b37O+rXr0dw8Aq070DHjx/MM888iXaavKzMmoEDOzBp0vOo1a4y8O7KjRvradKkPvb2nyOCgjubNn1Ms2YNpWlld2A73333Ml26tJZRGfNK3gcN6iSFgkreRdnsqryvXj0O+fDuyZIlY+jYsaU0gyZ479WrLV9++eLN7yI2dg0tWjSSHe979065jff333+mGt47yoh3e8CVtDRLBg9+kkWL3kb7RL5373e0atVYp3yzK5aWE+jatY00ayKH1ydOlJfb8P77gxk/frB0c/XAz88UY+Nm2Nh8hnbty7FjM2nXrjkHD05DPq/cqv9M8hhPqte/8PRIMXAuWTJaJyh4kJi4ThpoJiAWFjmRl7eZl1/uybffvoz+axFo5cGCBW9XCQoFBVtp3boJpqZj0e4+ycj4hWHDujBjxkjkU9J5O7t2fXvbwPnii90ZO3Yg4kJ1Qq225ZNPhvHWW/10Xq/o07c4lKgyKGwHHJg9exTPPNNZZ0ubJ6tXv0eLFo3IzZXLE0ol75VBoZJ3cXJkVd6/+eYlGTHjyaJFo6sEhcLCbbRp05SlS7W8O5OZ+QvPPttVdrzv2XN7MK6O94kTh/HWW/1lwrtgPjXVkkGDOukEhe1s3vwJjRvX58aN9QjmnTl6dAYdOrTgt99+RP8zUfaAEyqVDePGDdIJCts5e/Yn6tQx4uzZn25yExKygu7d27Bp08fII+QoU//SoODE4sVVg8KNG+tp1aoJGzZ8iHbgzM/fwogRvZg6dQTyCQrutwWFwsKtmJg0Z/nyd9AGhczMjTz3XFd++OE15HMMryc7d94eFEaM6Mm4cYPQpma12pZPP32Wt99+Sian7IkqpFWDgiM///wGQ4d2IT39F8Qg44G5+XjatGkqo3eJlbzrBgUt7+IJvCrvYheTXG62HrcFhaIicYhbJe/OZGX9wvPPd5Md79XNoFXH+2efPcvbbw+QCe+C+ZQUi9uCwrZtE2natIF0yJIICseOzaRTp5acPj0buQSFsjLr24LCuXM/U7fuY/z++5yb3ISFraRHD2O2bfsEQ1B4cP1HgoI76ekb6NHDGFPTMYipS/E+bujQztLx047INSiUlFjRuXMrfvzxdcSgL4rtdO/ehpUr30U+p+tVHxRGjx7AK6/0QkwHipXir7/ehwkThiCPKfDqgoIba9aMp3PnVjpPVzuZN+8tOnZsSUHBVuQx4FcXFLS8t5HKr1fyPmRIZ+kUVbnwfntQKC21omvX1lV4T0mxpFs3Le+uMvFefVAYPXoAr77aG13eR43qy4cfyoV3e6oPCp64u39Nq1aNCQ5ejjYoeHh8Q9eubaRTSV1l4L26oODJlSuLaNGiEfv2aQtDuXD58kK6dm3N9u3/hyEoPLj+I0HBlbIyWz7//HlGjuwtDUi7OXduDk2a1OfYsVnI4wKwp7qgoNHYM378YF5/vQ+lpQ7ADi5eXEC9eo9x6NA05HOyYXVBwZWlS8fSrVsb0tJ+ATxJT99A27bNpCfGHTLwfWtQ8AQ8+fXXmToLRndQVubI//7XnzFjBqJW67Oyoa6qCwpa3p/j1Vd7VeG9ceP6/PrrTOTD++1BoTreL19eKEvebw8KrixbNpbu3eXMuz3VBwVXAgOX0bVra7Ztm4i42bozefKLDB78pHQKqRyYry4ouJGdLWZZv/9+hPR5drF588e0adNUOpROzmsU5K1/bVCYP/8t+vVrL9UnF9vF9u//HiMjI/bsmUJurg0ffTSUHj3akJGxEfmkTXd+/vlN2rZtJgUFsZB0376pNGhQj+3bv6aw0I5x4wbx9NOddKYI9e3bHvC8WR42KGg52icqP7+ltGnTlHnz3qSw0JmFC9/GxKSZtM1QDt5diItbQ926daSFUKIoUVraBoYM6czYsQMpLLRlz57vaNCgHrt3y+lAtEre+/ZtJ/FQyXudOoL3vDzBe/fubXRepejbuz3gwbx5b92yHdiZ/fu/p0GDenh6Ct7Hjx/EoEHy433Hjv+7jXd//6UYGze7yfuiRW/Ttm0zrl5dJCPvYlayb992VbZHajROvPPO0/Tp04709I1cubJYunbfQh6HWtmjDQqjRw9gzJiBVbZHmpqOoVGj+vj5LSUuTizWHD36KeTzqk2Z+tcGhbVrx/PGG/2khWhiy5VK5ciSJWMYOLAjL77YjSFDOkvvs+Ry8doDbpiZjWfo0M7S+0zxPra83JZly8YyYEBHhg/vwdChnTl37meZeffg4MFpdO7civDwVZI38X24uk6mf//2vPhiT/r2bYeb21doNHKYurcHnLlxYz3du7eRtkJqt9+5cOHCPIYO7cLw4d0ZOLAjS5aMRqXSFnjRt297dHkfNaqvtB24kndT07G38a7RyIkZd9aseZ9nnnlSJxjr8t6B4cN7MGSIPHk/dGj6PXnv109uvNsjgrAlo0b1Zc0a7a4vR8CZ6GhzXnutD88/35XBgzvxxRcvSMcfy4V5J1Qqa7766kW+/nq4TlBwoqBgK5999hxDhnTm2We78MYb/QyzCQ9B/8KgYA84kJZmSVSUGeXlurXVxYUQGrqSy5cXkpGhXc0uh3eGld5TUy0JD18l1ePX9e5IRMRqLl9eQEbGL8hvq6qoIx8cvEIa9B1u/jk4kZi4josX55OYuA75vKsV/lQqG0JCVpCdvekW385kZm7k8uWF0s1Ajk8mSud9g4F3PXgvL7chKspMqr2h602si7pyZSEBAcukOgVyCjkOaDR2JCSsJSFh7S3cCJ++vku4fn0xhYVbMYSEfy4jsEL/Z4w/ConjO2//czH4a7cu6d/nnbxXB7cSvGs93jooOlBZj0Nug6ZWzlQfAnTriMjRt5YZA++1LyXzbk/lTMKdvpM7XRNy0J1qD+hyI1fvypIRHEOEBSvE7IJBBhlkkEEGGWSQkBEUAecRJ7XtBHYZZJBBBhlkkEEGAbsw4mYrBPKAfIMMMsgggwwyyCAgn/8HcPkzoFKkyhYAAAAASUVORK5CYII=" width="500" height="70"/>

  【借助学生熟悉的米尺引入分数与小数的联系,从而使学生初步理解小数的产生,再抽象到数射线上进一步理解小数的意义,符合学生的认知规律。】

  2 .认识两位小数。

  (1)把1平 均分成100份,每份是多少?你能运用学习一位小数的方法、自己研究出新的小数吗?

  教师出示媒体:

  

\

  ①学生自主研究,教师参与到学生的研 究中。

  ②学生汇报研究的成果:

  (2)师:你发现了什么?(这是二位小数、计数单位是0.01、分母是100的分数可以写成二位小数…… )

  (3)教师小结。

  3.认识三位小数。

  师;你能继续研究出其他的小数吗?

  教师出示媒体:

  

\

  学生自主研究后汇报交流:分母是1000的分数可以写成三位小数,计数单位是0.001………

  4.抽象概括小数的意义。

  讨 论:1.小数是由分母是多少的分数写成的?

英语+新概念学习资料大礼包

微信扫一扫 自动获取网盘链接

更多资料
更多>>
更多内容

小学英语资料大礼包合集

扫描下方二维码自动领取

更多>>
更多英语课程>>
更多>>
更多资料