2019年沪教版四年级上册数学教案:《三步计算式题》

2019-09-23 16:42:00来源:网络

  新学期开学在即,老师们都要开始准备教案了。对于一些教学经验还不够丰富的老师来说需要多看一些好的教案,这样会成长的更快。新东方在线小学网整理了《2019年沪教版四年级上册数学教案:<三步计算式题>》,供老师们参考。

  沪教版四年级上册《三步计算式题》数学教案

  教学准备

  1. 教学目标

  1、知道有括号的四则运算的运算顺序。

  2、能将分步列式合并成综 合算式,并正确使用括号。

  3、体会四则运算 的规则,培养认真仔细的好习惯。

  2. 教学重点/难点

  能够按运算顺序正确计算。

  能将分步列式合并成综合算式,并正确使用括号。

  3. 教学用具

  教学课件

  4. 标签

  教学过程

  一、新课导入:

  ①师:上节课我们还有一部分问题没有解决,让我们先来回忆一下:

  

\ACTphrvU10h8rsdSTZ58gSqqqJQUT0cjH9KQQWvEzgk5cIXT2G4xQRKviUocn/RHDJ2zihyzawF6M6QqFwFpVVcVTXxhIIiSaZzJlKMPcULk2Ysn0Ed71J6Hoi4WA+gSXPEJgxAdnEvYWxnr9y1lrxKvkAUpHrslY/Ur3r+a8D04ChAWELtRIINBEdvZMJE14lKSGOjJQ4nnr2cXbt34UxISTQ93Av5OMHQnjsoJB9bj/gx0/oj5Q+f/jPd5wArHqfq7euQ6g8oA5jigjkvId/2o8Z+NVfElg/H6dTlP4gG8dk4w8UMjBYRkd7DsePLueTxZOobUhnYOgK/QPFhEK6SKS00kqqrp/hpWG/ZMPGefT2CfwUDGURdmQDeXDoMl9+OZ9HHv4ZUbGbcZzL9Pclk5S0kVOn1nLm7CpOn17MmTNLOXNmFSdPfo7Pt4PBgXTbTirL6ConDy/j1Vd+w/FTX4DFouvrzjLu9V/z5tin2LJ+KmtWTubxx/6NpZ9Po7Ujonsxl10YyIO0bOVirjBIPc1OJ3dCtxFmi7J6ClEz9VVL32PJognc6coEbtHblcfqlZP49/t/zOq109i+eyFxiccYHFL6pHL+NUhW4+GXdfbrEbRLU4IxpZhQPuHig4Q/f5/ghCcIX4/FqDSuxeO77uaRnXWEi3F7SEk8RFLCfhIv7iYudg/JSXtobfGhsJChCrEerGJo8BY7ty1n3vyJ1NXnA+10dGRy6NAyUlMPoIc9N/cgTz35M27eTLTXrMbbWo01RLThDciN+E0JwE+rv8EGAN0EjoBNSAbKMG2HCc37KYFxIwjbKtKQgH/CTwluegvjz8RQQE9PHEWFu4iP30xi0tckpXxNYtI24uI2kJC4npbWswi2noxANSm0t8fx8bQX+Lu//xs+nvEyny4ayZfrJ3Ot8iDCQlMDmVg6Ws9x/vxyDh2fz+HjczhwdDo7909j1/657D44m8ycNQz54+z1KztJE1mizA3Ioq01nqVLRzPuzUdYs2Yy49/6D9q7zyKVt2UaGbtwZiT4y32r0iY+vOSSw/XBEmq/rSWk41De00pX6DIeg0p3hQRiMyYJyCLceYChEf+d4LFlyKZsP4ZiAtufIfjBYxAqQYa4CnOKSu+yZW+zbsMH9PXnIcXJJSF0oN69lUA1picbp99HuC6P0KFtBN4fRvDreUgV32i//zqGG9TV5pGRlUCqL4H0zEQycpLIyk7Fl5FKXkEW3d1VSIIQdhA0Y2hEROVa8AcaqbqeRUlxAq3tTRSW5PPi8Kc5eGg3xgTxEokfzxEsiJxr7QTC9vNeYJAA4e+HKbxAP3Zib9JRtosTLMQJXCXs5BAe2k+46UsCUc8wNPLfCSUesO1UEQP9SeQXbOX46RUcPLKc6TNe4eXRj7Br3zxOn1vJhZiNtLQmIYGq0MIq17lx/QzDh/2SDRvn09unG4tFwHXudhWybuMcfvf0T1m/bipDAZkn9PanUlS0H59vF5lZ+8jK2k5m1jYyMnfiS9/DpbLjDPnTbAusyaaK08dXMerVhzhxci1wk7BTQHd3CuVlR2lrjUMNJHZ+NYWnn/slZ6J3IhVwjg3+JXZwmwfmkqXICmuhlxoanTvcCdnq2Yq/ScIQuueyT99i0aKJ3OlKB+q42+5j9dLxPPrwT1gwdzQzZ7zCsOcf5PjJ9fQNXAJu0NebS0nBfmIvbCAxbgPxseuIj9nAxahN5GTto7s7Ew9nt85agUKc2HcIvv0jAi//nFDWGRx/rQ24wshpu51O1IV1HNi7hOOHvuDIwS84vG8J+3Yv5tiRz6ivu4jKSnjibTfp7alk6/oFzJ/3JvUNBUAroVA5fn8p4XAF0E1DYynTZ45l6kev09GhLKAKW40pHTSy/W7gj80A+sMBmv11FgdWhk8qnr9vMpALwThCZ0cw9PL/ILB7AWHfPkJr3iUw8heE0jfg2IFk9c2DrFjyGmPeeJgJb/6OCROe5q0JTzF61G+Y+ObjZOduxts3iAZS6bxzkfWrRvHqiJ+zbPloVq2cwLNP/htTpo2kquacPWuyK9DefJJjh+eybedHbNs5nW07prBl29ts2fYRm7Z+SLJvFUMBGfYKTKRbwYk4Jt5CUyXs27eYSZOeJi//a1ISV/LG+N/S3XfRnsF4DGdsArDm9a6iqLxGxg3Qos1T779Ec+DbJ4DKnma6QmV4w/dM2zHJtrMMhX04/cfwz/kR/ikv4uREwVA14UvH8E95itDad/AMZQoJBi/R01NEV1cyq1eNZ+PG96hvSKCnp4xgsNDeS7JFLPz/axi6cGggnLuewBs/Zeihvye4dxXGabTnXTWn6sjJOMuGjatZvXYVmzetZNu2L9i2ZSMbNqxlz57N3GrKQxKA0kFbZRZgWhD6521gkFC4le07v+TpZ5/gNw/9mqwcVQe9g8cOUproAFIUKVNIu4ROoIcgQ3+E//aH/3zHctBZNqBl2eFmkWDKrXEEYr4kmH3e4mq3CHOEoYk/IHRgOcaR4NPfl0xG+kp27n6L7Tsm89FHjzPstV+yccsk9u6bwrHj82hqikbePGW2XONG1RmGv/gLvtq4gN4+hZKK6ezMY8vWT3nx5QfYtWs2HkUyl/aOGA4f/pj168azdcv7bN0ylc1bprB503usX/8hJ099Rm9fEp64Ww5QzZkTXzDqtUc4cWITUE/A7+NyyX7Ssw/isWCaKc7ezYvPP8i2rz9DApQ3jFIc0nDZJkxx/BqkjubwHTqCukiitE7dTqxixaIPWLRwkk0A1xjoz+ZS0UGK8nYBxYSCBXyxfDJvTniWwpJTwB3amjPY9dVU3h//CDPf/R0fv/M4Uyc/yUdvPsmXKybTWJ+AsCIuY4KlGH+5wHihBMItewl+9hjBORMwtYVAC7ry3tOXx+XyU+QUHqSg+AT5RacoKD5EftEhSi6fpvOueCh4tM6rQC19vTfYumER8+dOoL6+ELkptEPp4NatUhbMfZ+Xhz1Efu45HNc4/Dois3sDoYGq81I9crN9cwIYcAZpCVTZG19nIgIZeEqaiUAOTt8OAod/jf+9n+Af9yCDf/NXBNdPwPQloPTRtrYjxFyYx8G90zi0/yMO7p3CkYNvc3jfexw9OIvqmr14ejwCrQwOnKaxbitdd3YhzJ0sslM/44kn72Pzjun2uhIxxNDTfY6c3C9JTFpBYtIqElKWk5K2gpS0VSQmraS8Yjuh0EU8dVCZMRiScUwckE66bwvPv/AgS1e+TU9vJrt3zeKlV39Fw60LSMDVxTIdBEuwN6oR5AoeKkxWSEOgjNbgt6eBVve00Bu6igyjpeKXLedU6ZyMQkKZhApn45/4QwLzXiV0ZAX+lx9maMRDhC8dt+9nDsZcprE2mgN75rB54xQOH5jFkUNz2br5Q44dW05dfSLCOJOO1zHFGKcSQydh6gnfjSNUtB7/py/gn/wioStpONTZDkCYP9euJHP+wn7OnNvHxdiDxMceIS76COfP7ich/hi3b19CznOrG+sMtzF2WUygoR4GB6o4dXwbC+Z9xLNPP8bGTV9y924bwgKSvQGDpY2aTjw9oG5EC6gLY7rAdBGkl/5v6Hy/6c93PATOQBecPJ2b6wQbdzH0yU/wjxlu5xWfAAAgAElEQVSFU5uPaSklmLGBoXH3E4pfA277pnIKJQQG04m5sIxFn79L+50cJHB7mh4yXPUBJVRVnua5p+5j7dq59PUJrbH5VixzZo3l17/6ETt3zqOlLYfmtmx6esVrNBzOpa/3HHfvnqK7+yzd3VF0dUfR1RVF1904envjCTvJyN6BnT1Qw4kjq3hh2K84eHgd0IYTLOD04bk8+siPiUvZQ0tbIc3N+Sz5dBKvjHiYFN9+hB1g19aNrpvL1q1QXPPBXGKQWm6FbnM7cBtJGiWWk6/snZusWPo+i5ZMouNuJlBJe2c6ZddiCDlqjVhPSclBxo5+mqjze4A2gv4SWusvcvPKMWorTlBTfozqq2epvnKOpppY/IM6k7iG05JIKGkT4WtJONzFcIeQbwmByU/glKQgh7sCqKO5KZ29BxeyfN0U1nw1h7VfzWfdppms2TSDTTvmUVkViyfjoBouDfT11rB1/RLmz51IfX0xctivA2203S5n+fJpjH7tYXLTTyEHXvH/GoQ6qss6jUAd3gZmN9+sBjpAZ0i3iC2MaBSmzMATUPMhZi0ncern4f/k1/gn/gqnZh+QJYtjRheoPL8Kj3OvDJpEDNEYd8iaTGPdbo6fnElrx1GkYs+m/vphhj13P1+sH3/PdTQ3H2Hnjo/4/ItJrF77AV98+Q5rvpzImrWTWLnqfaJj1uIfikOCtjJ4hE0DcThOIjM/GsHf/+NfM2fRGLZsm8HLI37Lv/zkv3Hw1GKCIan0DXFS+Rut/HUwrtr86d7vZLKpGSyh6VtCQEHH4WbvbfpD1xA5F4WgUiwDSPeIUnDIwiGV8LW5BM+Nwf/y3zP4D/87gQNzcLiK61NtCqi+dpRViyfwydQRLJgziiWfvsH8ma+ycf0MKq9L8ah7MGFzhfBgPqFLsQTvVBGmC4cwoeIj+N96gODO9Tg02y5ASAjFRefZc2ADX+9Zy+5969m9dyO7921gy/YvOHB4E/X1+RgjG72OqUXlHgy3MDTS319Fc8slmxx6AIf9e9bw8ktPcjE+Djm/t4DbYNqR4XET3kawJgHdIu4hSD/9BP+s9+E7hoB8uHILpNn2shDHJBNMG8nQ63+Nf+Z4gp/Nwv/mg/g3jCd8OxbJyrmWmSEDG/9AHhfOLmXRZ+/aIfAV3N0C8iIO5hVuVsXw6su/Yv2GufQPFAMVrP/iff6f//SXPPjwv7Ps8ynM/HQCc5e9TULKFsKOLoWJB7E3wIuUMs63G4Z5oh5ok9mZE6t44/WHOHFqPQI/XKL1VhRzp77I0y88zKIV01iwcBLPP/sL9uybR8ixrmgmx31coapdsh2A0jnL6KOWW+E2OoO37cEpRXR0lFN/nSULJzNvwUQ6OrOBWxQXnuDtt4Zz5vw2enor6OmtYvPmWUx880lyc04jh0mhHZW0FUqmV53rQlcDTt0pgsueILRoBs7tOkxLOcGNHxBcNAZTm4G0t/LzQ4Nl3GpMpLo6jppqH7XVGdTVJFFTnUpdbTp9faXoEFjxVuikr6eer9Z8yuxZI6mry0cOcj21NdnMmPEWb7zxBDnZJ+m820xffz3G6I5BpA6Q4rj16DxAMNE/3AH4jZ8upwGhsKqGk1I/c/HmAiLq55BNuOwQgXefJJy5GHEPUx1+7RZ8ePCRJhDdCI6VYaZbXedQfnkzzz7735m1ZBw3a6Nobkln9cp3eOa5nxIVu9y+D/EYcw7HRBMMJhAIJBAI+AgEUwgEzxAIxBIIZBEKSbIw7j6BPLfKRQQCcZw6MZdPZj3N0uXDWPDpszz55I/4mx/8v2zbO40hv1A+RXJCIaAUO4dIwXOf0w5DFq9uDhXTGPj2fgBVA+30h2/Ie6FSFSZF8H9NyiYRxxGzG0Me4fbTBN7/DcG5w3DuJgsSYDzvAuNkEQzk4vfnsP/AfI6fXMzdrkyCwUocRyHXQgwVhLhBqD8R/7ynCOxeS/huDU5/G6ELOwlOfJxwzNcYGnEs/RkucfN6LAlxe4mN3k5C7G4S4vaQGLeDmAs7SE7Yw+22TLwNYD2XClXepuxyEjNnv0deUQwS1EOcPbeDEa8+THTUEWS4KxIP3pZwc8S/W1DDeWUVSQII/Fnvw3cMAaVYho69uUyaXQQrJRyOInzzfQJHHiW48zGCSe8T7o4jTAFq/OItSxUR8OdSWrCZ82c+o6db4CRZa88R7N9kIDdsCXfvJnP+wmKKSvZbf9sCLl5cw7IVE1j5+URWrprAgkWvsfLzcaSlb8RxdKNQl9YilQPz3c9lWUx1a2RfoPrmCZKSP6O69gRQhGNEJrfzTjyHD89k6eKxLF32FukZm/H7lWbqk9/LFEfMFDxFTWMXswao4VaonfbAHeTAlCCBT3VNylny6ZvMmz+K9k6ZAXTfSWfz6g944bn/YO1XS1i7fj7PP3M/+/bMxR8Q60bjSjYoq0gXYpQKqkPgKky4hFD2LIJT7iPw8WSC8yfgn/E0ocKDmLC31XuvIud1e72qYiqr9CKYdR1vECySzb29dWxcN48Zn7xCbX0O0ItjGpg/9z3+0//9l4wcM4y1G5ez6PM57Dq0hv7+y0iwj0xcChnZBRta+GMJIGAG6XZqJQGo0Y+VDDFoMhAOvCEfpzuG4L5R+Jc/iXP7FPcEqnscxJQ5YzX579HgUbMZsYUMDMVw9tR8nn3yF7z+xtOMn/gCzz57H/v2f4Q/kIh0DvF4S1+abFLtvaFwlbKYZPhr3CG29TQ26RiTQiCQwED/efr6ztHTFc3xo7N4c9IDtNw+hjEpUnVzDhGNS7OBX4KvcQfLukksW/SV/SXUfktPYEkArfSHK1ApCHmuWPdaZCEs2Sa0bAxp+NeMYmjSQzj5exDWTwLGZICTb4knqgOUz6JPR/DZinF03vUhZyfCXtVclfNpqggef5ehMT8jsHI2oV2r8U9+Gv+qcZjBQuScKWxUQjh8lUCgnIC/mkCgjkDgGoFAJQF/DYFADY5TiSyY3cCYuoiZVTVwm5rqHN6b/BxjJ75GenYCubk+Ro1+idlzx9HQWIgYwdTh0UnFIF79AYxdoPTutwaC3Pl+aAFJCylyDsZl6qjxQoG01QMxON1ncUKSGCSwig64xzvOwzFZBPw+BvrTCYfVKi7TMo3s5q5dX3dMJv5ABqGQ1QkxPoaGfPT2ZdPVnUlHRxLt7fHcuRPHwIC2mVZV1PUDUNhKNYtUztkqb1qdcSecTzCUR9jx4ZgUOXyW0+8fyqWjPZWOjtSISkOTmswADOovrDsGulFbygA3aAh30BpsRwJsLp44mlRfWVkbSc9cz8BQFjrT6GxP4eTxpcyZP54588Zy/vxyerp9eMtinrOYcWUi9Pkj1T2F3++E8ghXbSB47G2C56YRrjuFCVUim4669BW5dayVuG4w10V8XQe0DfbzRoKBOkpLz5KRvYfu3jKgHX+whvNRW1i4ZBLrNszmyy9ns2LVFPYdXkF/f6l9zEiNlir38TDNCD3vm1lAQ2aQTqcG2UbOw2PM+PCq3Qx7Hn2YUDRO6zqcjl0YRyGfGESzxy5nuQtUngKnx5rRJKEfAhkFA1lcKfmSo4encujAVEpL1zEwIMFeg65w+3XrNw5PCE67jkw8U5tEvGHtRWH2mKSI69LP0+ntOkP1ja2WYhlvn0+X1rST0e3gxIjrtmKKZHNjMI/6wO0/+Dr/KX+CjkNlfyu94Qr72ifjiSimYtCtYJ0/5OCEThJImEygYDlOyM4kjMxkjFUDNRYmNiafluYztLbEEAxqgaPFXS7efVeFM5BDMH0mgW0jCKx9g+C5OYQ74y1UaJcxXfVdVaWtBZdFpwXQvbIRxpU/ERFDqCEUrKW87BSzZoxh1Mjnee3V55k/bwLXriXhmFsYo/dLM575uyaDTqTQaUC0hmQGFqLz+7EJbIzPBrw8ZLU7y74puuVbjLearUtdKkGrSyzqKZCNx1H3yYfJQA1cPC8BEW5zF6usnZz8jK6AK+4uzkE4ybb9V2hGV8Z9CDQgCojGlYSWazWqiIhuGlpqnKtaqDo4Zbi6Q64khq6o59mgLktnRiWbKWWAm9SFbtMaaEaCrCZOq4JoMgkE0ggE7WvrWCtLCggECqirS6KuLtEK7BV51Y41kzG2izBuxS+SDsZV79TNXsHJTX8+zkCJrUiqwci2rqfDr5x8DfSNyNBLF2hE8ta4LbB8nzG1hEK1BIO1OEYqJMe5yeBQJV3dlbS3X6WluYSWlhI67lwm7FyznYRqAd2wN5QKw+kN881qoH4zQKdTJa95xBnyEnTk7MouU1mhPm8ZS2EepY9aSQWXKaN4fDIerVK/NyXiI5GhwYsM9usSVzqGeIw5jzHnEAVSq01kt3xlUewCuP+nXcZF9zFcRzBz0bsO/TkTi7fdaxOWiUd8Ci7iKZdqJyPFmXxdlXVTaAhk0RL69lIQ1/ua6QmXo7MTKeh8giQoDGUSpBswqRgTgzN0njAX7X7DRfsaq4aY0NA94oZSoMUaVQqyDDe2GFfoUCjKpiMNpykNZ6gCqMZY+XRjlLRxFdlqr0QkIWygN9cQmWgxcDJGReVk6dKYqxhTYckTQsO+1VhAUcEZCgqiaGm+hJxf1RQSkTlDB8YKzck9dBtREG3Do5k2EKYZ//cDAvLh6QGpZKsKr6VLtW9SJLBaHRLPDEZ/TrV+st2WzliZZTWNcVU5TQ6iC26XSExkcLbr5CZX2mHSJIEYn/3bisGphwGe85exrmKO1SdXdULPezTDfq0IFaUy5OG4TmgqTW3dxdyPAhkoG5076HKKLIINUkddoINbAy1IkFWqq1VHdZNavrxeToZ8WMaV58crXrzedqQmuCKkgr9kk5DCP6rmqRvCV5HDXWs/lAVhH99UgVGjliqMy89XWQat1FU5sQ4vUGsyUJxTh8Q37de17dXlshb7f9p5WMMNN/jrpmYjfxwC0hnAddvV/b4ESITssauDU4BxFUG1SFEISJkx2glEBH8Xk9eAqnCLVvGaGO4VizNo5a90TNX20cdU4bcUVMEWYhD6ZnrENYggnCxViSSFVPuqf3QRgb4Ske1ihXt0KUyTgBZomhBTqQvm0hL8lh2AcbjR30ZvuBwP6vFZ/r9VJzWpGNfpLMl2OLlIbLkoCdFk2PdSJdxVeTjLxg8ll1gbWNf5TDwnjHvWG9ECRs7dDXufFmMcO4vjunyvsZpArlaQCBu6ekNGO2QlP1hPAVfCvQK5r5rxjF6a8e4VXaAU2rVxDY+k8vfmAHVAFWFq8NP3Z70P3zELKN1m7ywbBK1RszVd90ze9eZSN7A0mxgycbU8jFbndmjqGlTrzaor35Y/7Jqgq8G1deiyVpBicJFpk04Ojim0MJXn/Sv6/NZI3RTh+g641XSBhYSsAqHVHtfW0zEqRy1sCTlwBfYxbFdjilB1TmNEkxybFAapp97fRVN/GxJQtUNSfSL5XJJVGmpqo25rWIczlWU27nxBk6omgCu2Co4Uc/v9QbFI5rpCcUa9d6tsBeTBQMb15K3DSxqaiFS/5/f10PUw1/G/wjoS2I2rs1KN3KTl9mbTZKHJpNo+1jeL4gZMgG6n2XYTKnKmrl+qHaOMFy02MpFOTwOrYu1qwqIJIA2vc1A8WwbBImtwETF6UYhIPQKiMW4CUFcufS5PxdO4SceHBwEV4s0MLtpuQwO3XIPIW1svAdLs4+vQOMk+rsI8VoeHVJtwIr+u8FYqdf5cmgPfzhEs6DhUDzTTG7Y0UDWyJwWjxjWuLWWqfW18Uu2bTEwEW0hRBg961j0b1QhSyFi7dTVkEi0tTxBOz7tur8vmsGNKMI6wC437fSpgKEWcGi7JY161HUCke5locnkby7ly/7s+F9X282s2Man4YzVEzBG8ZFCHsZpYDk2E/kxB6O+4AyhEdThE+16r5WwLAan5ixpPqE2jzwZqTz9IvUA1KAu9VOl61rJRTSOsSbzo7KTLcyI2kcZJwThp9rFz3IPguPi+xQTtz3s+xPl41opKA1Xjens9moxMiQR5k2PbVZu8jFUwVWvJSDtI19S+yJ0XDNJAvb+b5v42BFbJs4G9wF5PLq4JDpm4Zi5GzeZ9NohF+vIq1GPNXozKQES4hrlVv248VuJuPxpb4ZtI7PMmuIYskYtZkcOpKlslqcqizgdUDlcTQL37s3IT1Nv/1w5CZwc38BRFK21lpKqiDWBakAWZP/zHb4ZsB3AFkUDQij7LDSD3qoLqWdbuVKt3b1DqVc4ZeHLKPrwkEY94+moAV4w7Dg/jT5KghxVAc6Em/X5NNL8PO6XgcvRNqu0wdCagHa0mFcHz1flLZJftsNXo7yTPa6xDmLfAdh6vK0jgVjCbtm/tCexQ2auLYL6I57evhe0EvMCfJonYdtZqwiQFmErDqMOfugjaQsj1EEjDhZmNkE6kiNM9G3XQk7MtBVS+aD9Z8oknW67w8iUUkpb4YoUqXe0yub+MNVAyXLGQUp7EBsrtxxV7tq/gam0ZFT3Ujvem/V4hQ6gMiqEeh8E/6334jhNAmQR7txIVip2x9o5i7FBkq3A7uLJ7A8aygWT5Ix81adEBsgQ/jwEhhzgDUdQUyAbXc1d9fDWx6Idl9JhUSSYRuLzquUgCsgbSpsQmNZFuMBbKkmBQZK8rzwbzQoz1TtUEJsml2D5WNo7Js4+pdLQ8ezjFV0AgoC5uDXZIpneNqzWJaNciAzmRichF2SyuR7F6BZtSqUqMsoiKbQtqJbdd+McKY5lKBMtUzP0axlyzyaAaF+s3NfZ7lYlTR+SA1tCIuCDdBCNB3bjwTwuy3CLJwEQkDtFMaZL/d7nXuuilvsCiA3RvsrhlE8A3q6JLAqiTG0hhSHfGon7UKqamLBvtMrU70C4gA29oKwwfIUH47Pcrpq5DZhvEjQ8JchfwYKJEPFvGFPt5ZNehSUWDsEpRJ6IQichb2z0Ek4qweDQJ+ezjRCYbsYuU7jvBFm7KMvJmB55dpsdoaghm0xL6tp7A6gdwRa7b6PXF2sQUj2MszIPAnJ43uNq2imGT0lTNPbMcz79Aikl5DT0fbxtTXI8B9bu2hjHu8LcAxxZ2xsrDewNnnSFoQajzRBV+1L2ly7hQr2vNqu6HZXgqx7pxLKKHInOudqtSEGmC8Lbry3G4QfD7AAHJL6Ssl0gJBRs8XVN2rZTUQUq3MvMtFJMrgd0VMPPmCOiugYvZKs6uQ2YxSdEhrcceUtNp23GgbCJ7TVaSwSEPxygMpG5Eei26wKWwia3eTaG9Zg2+uktQ7P6MMUU4Rg/DJVtVKGtBGAZD1NEY7KLF34FU0FrRaLUSOQ/IifjQYbC+LnY+YYoRgxe1Y1RdI00AqpFuaaHuMEshnUgZB+t3ShUeBirVvXFxeIVuGsA0gZHgLYFdq//biC66DrqUNaRG8NohKCSkPH8xgsFlW0RyrBW3HQC+YQbAEF2mziY3UbnEpfgql1wDtpIJNCD68AbEHhQpAUWxfk0Qkbo8isvbqt5YWMeoL4APnR8Y3cC1nHfv8SIhJU1Oci+4onRucZQa8bk+dmLEY8SgaqLe8tV52xEpvBWLGtUY19M42f2o82dyK/At5aCNQ+1gM/3OFXktLd5vEChLLCK1m7Gdu/ua59v7OQGMLqzZQtEd7mvsKLI/a+c5xqOLalJQG1MTQcl24VFTghrOqEWmcaEc7Z6txpcVwtT7D/f+VsKHlax2uwH7daPmTGV48KZ22uqpoUQLhaBUgbeCEA0Mfh86AKlIs21Vn08oXGhfJBF78yokqWrDFBA2BXYXQA3krWevisq5wbTAfl1NW9TxRy0dL2M6cnFqfZh2rbz1zc62LWB2xJtpRc9QM3jvzfWWxLRj0Gsow++/xJ3OfAIhNZIutlW6QjvK8CnFOMUIhKSVSCEKhWlSiXzsELdoC3XT5m9F3lwLS6j1pVHHo3z3tTKuW5IKYXleqMZWH575S2Ri0u1fNXxRrv51G+jVs1Qxe13oEnqnsd/LPUOqOrxOoA4J6l6QlkQgAlmy/HUXb6ClHqca0DVZNOANfxVGUvqpdgDaWXzzJrCfIe6aerwZgAb4NLzkqZCLDg91M1e15bMi/r/InhEfLoNMg73RJBE5E9DH8WY28vMpOFb/3riPozr+OjCWLV9VGZW5QhzGTTQ+eQ6jS2e/b8+ahnH9j1VoTZk+4ikgcMtFDFF4UFISwijSRBJD/VA6Td+WBmoM1QMdlgaaDnZnSJfQFCYW2EY7VT37xUjFH43MLLK8Qspl+9h5nYWcJb5cBlPsQkgCLXkuYx5rSN32IhKKW6Wrv4aqGFvZFHROqQw8/dvGqggjK41NxhWuu443V9BCSiHXSNZdDZ6PQRU6F/v+sIAoQQ58Pn09GZSUHCQh9Ssqq08QdgRPdZwcmptjSM3YSkzieqITt5FXfIzu3lTkjVOD50s4phjHKSYYKsZxJFh6/19iK/USCF/BqThP8Ks5+GePIbR2GuHLJzB+m22N9eY12g7m2GBcbCEjpYbpUpjeOMoJF8+ApsaLnDn5JRu+msfp6C00d/hQcxlJegVABbeaY0hOX099w2k8ly1vycygOGYBQjUTfD5IA42BHhoGm5EDIcbpglfKHCUQyGVwKIeQYxkOqixKKYNDRXR15eIPqO7QFWTZzNs2lqCfb5OWQj96oKSlhJsQqsfcLsdpu4zprwM1ub4H7/dome7w1tTYDqIObydA2RX1KL+5r7+J7t4mzD1bj1YvxUiCECs9ZQlpwK/DHUa7GkCqbtrPN3YAZpBupx6hkFqPWZdJo2wuhUJ0oCuJoqsrid6+NJyw2IZ63ZjuVOTZn1WSQq57fjz4yIfSnB1ScELJhCqPEW45RdhJxiEdgWdspa80Une4K3x+Yz0DPEZQErq7oFDNnTuJFF7eTdHVnbTfTbYVchwye7DBj3Tu3Imjt+8YxqiBfXLEdSdj3DmDdiLp1A+V0Bz4lqbwxlAzeIc+pwqdpcgsUO9HmdlpEWQiAnDY0fOchbe3kGVhsEL3Zzwpd0Uk7BxM935MAbKRr8uRFThGK+4Ix7F71AI0SejfgmAIUSUfJYtoUpAEoJBNGWEncq+nGBGjk8Gv5+xXgxv4TSUCd17HuIFfO3O1Wq0n9H3oAKT6zQWu0lofy75NH/Lwg//EO1Nfo6MnFaigpzuHz1ZM4uHf/pSRLz7M6BGPsGrZBOpqzwJlNojKENNxCmluiiI9cxd3u3IQXDsb11SdfBynhHDxcfwTnsa/5ElCB4YTXPhD/G/8ilD0ThznKmFycCz1y7WEdLE/z+TdOyg6RFJo4Co3q6P54N3hjHn9WeZOH8+IF/+DGZ9MoOl2Orir4mUEgoV8+OGr/OAf/itnzq5E3izV3rdqoK5FpB042TmEnwZuDtzlZnej/ZkcwvdY2+VSUrKPvQc/JSFtI3e7ROsdirjTkcShQwtZvfptTp5Zze2OLGRgpKYvwvoxlpfsHZ7LOC7OWI7DdRx/BU7qQYLzRhOYP5Lg7g2EOyowpg6FX4wb+DUxRDom6dBKA7+qIzbimNtU3cxl597lfLVtIfkl8QSCrUAbxmUENdHecZXUrFM0teTYJOBRSoUtoR1BU8Rz/PEZwF2nzv5skU3CCkFqAvDhQWoZwCU6OpL4eMZItuyazd2eNOTGt9W7yScUyscxRXhJIwfHySUU1rOlySAFl5KIj5Dvc/xvP00weSOqYy90SDuPcKt5H96WbyT9VCGbKCQRCAW5snIPH88YzrDhv2bYy/czc/5oLpUfwRtwSyd9rXwbo0c/wc797zLoj7bn34fndayBX6mTkszq/Jdo+tYJwOHmwG3rCSxLbcYyrjQJG3sPOkbu3VAon4qqkyT6tlN5I45AUOKN45rE6+udgRfsI2Veim2wL7LvgzLfruD3X6bsSjRpmYdoak0RyJZMoXYbRSUkiQisqnTuEvteScJRZELZPnIN1/AHyii/FkNKxj4qq2PttV8FU4FDJY4pB6ro6y+lvSODQKAYYyqRe60RY24giUmLIb3/KghR+2frgX7HHYBWunkEAz4621OYO2sUL736O+qbk4Dr3Go8z5iRj7J8+WzKLl+kpjqB260xBPyphE0OjisJIRu4pQWbWLzwDWpqLiJvllAi5SYpxWm+gH/pCALvvkS4NhrTn43TsZvAtH8hMGU4oZtZGMrsbEEqbmNsC2mKMUb0eOTvYowpwDGXbJBUJ7AyFs4dw6jXHyMl5Ri3W+uJO7uO0a88yOr1C9B2zHHKOXpsGQ/c/7f8z7/7K85HrUWCVhmCCeoMQQ9lpIVdEX5qqRnqpLqvBYcqpJLQ1lZ2IbLS1vHa8Pt56eXfkJ5+AKilqSmGOTPfYOKYx1mxeAzjXnuUpatmUN+SCVThDxTSN5CLY9T/V8zfewfzCIa1qhGeszFVhBO+JvjBMMInPyGUMAv/1Afwb19NuNMGfHMNY1TaQRU5NUhHYvORS1ptGNNKUXE8kyaNZMG8MaxYPomx417hzPkDBB0PyvH761m/fhH3/fu/Eh27F8dRn1atjurw4KDI4fI3s4CGzACdjnjB6mxJGCDKBMpAmSIShERtNjFhHT/4wX/h3Y9foe1OGnIjyu5Ff28W2dnbSEzbQShkW3uTRXzKOgou7yPk+FDaYRgfYdIx5BFuPoF/9AME1o4mdDfBSkzbBSg7cLyX0ql7ARqIdeaTinGXw3LpvhvDW5MeYeykR0lOXUdhzpdMGPsbpnw0nDvdutF7iYEBHx9PfYH/8//435iz5Dm6+i7Y1yRFupPIyhqFpyRJ3Qrl0hb+9mJwVf0ddIVrkZmU0qYV3rRdqoWDHVPC6ZMrGDfuCUaNfpQJk15k/6E1+AMCqxi3axcSh3GLvRzUy9qYSCgm2wbwSgL+YjZ/NY/x4x/n1ZG/4ePpYykpOW4reOn4XEtXd6FUuwCFfnQHqcg+d4klX1yhr6+I7duX8+qrjzFh/JOMGTeMPQ+kHgEAACAASURBVAdWM+QXfwylfIbCFaxYOZ1xbw6nsioOr3vWHQE7IDaVYJQufYMQ9Qx8H4bAcsNk2OGKdAIbN0zl9dHP09CcDFyhonwnv/3Nv/D2lLEs/Xw2Ow58QX17CjonMK72vWDN1y/tZtmCcdTWpCO/cDlQiOP4MJTjXN9H4J1/wf/5XJywDAoN1QS+GsHQO48TLIkTxUC7vKVvYH9/KpnpOzl3YRMXYrYRHb2NmKgtXDj/FadObSAz4xADQ9LOhYL5bPjsA44fWY4/WAT00NqczHvvPMnkd0einPfSokOMfPU/WLnwdcaO+iXHT61AgqLQTV3c36Wq6YbiZaCcEPU0Bu5QO9gqCcCo5LWyqLLp7S5m+6aZjBz+AFEXdgPVnD21hGeeuZ/8vIM0N+WRlbKBUaOf5PjptUAdrc0JrN8wlQ1blgGNBIMV7Ny9jDXrptHUHI/nGtaI05FAcNtrhFa9gxmoxwneIJQ2h8D0FwhfSUbF4MTDoQbPv1S1y1W1UPF7Dc59NDWV8enCt3ln0utcryyhuamG1SvnMOXDNyi5nIFAOG3k5kfz+OO/5uf//kNOntpEKNSI11E0yuE3ionWIVVSM38KBNTlSDtNZIBw7SFVGM6HskjaWuOYNft1fvvQv/HJotE0tiQCFZbMUEgoUMCxw8t48tlfcvT0Vwz6i9mxYwbPvvBLzsWuQ+mGIj+ciUMu4d5MAgtGMfTDvyKwYRrB5kTCTp59r7Pd6wiFomlrO0Ft3Slq609TW3eE6pqTVNcep7r2GG23YwiFfER6+VaW7eCVVx/ifNzn8rtxmV1fT2H48F+SmrEHKGdoqJAjh+bz2uuP8Pwz/8YXXw2nqf2kPY/xeKb32nlqxyEzjuZgNrfD38EeQH87XeFqJKBmI2SOElxhPpOLQpmVlSd5ecQjbNo0nStXUtmy+RMmvvU74pO3IoWhFmuFpCdu4MDeBTQ3xwKVDA3mcTFuK9HRm+z3pWGcDPu81ynM3cfEiY+yfeenlJWd4P33hvH+h68TCEvX7u6IGHXZU1hVOwiFpJTvrxIvgvHv27+Ml15+hL17l3GlLIZ9exfywsuPkJx+iFBYMf06LsZt45//9W/51UP3kV1wGuluq/FMmGQGp1pDCoc6VBOk5896H77jIXCRxduFCwtXWL12Cq+PG0ZDWxpQRmrSZ/zDD/4vXh35MIvnjeKN1x9i+ITnSM45CFzHP5hDXu4eduxayu49K1n+6ZsMf+EBVq+dwd4DKzl05DNuVEdJtc41nLunCKy6j8FnHyOUG4/DTcItPvwTfkdgyQRC3Tk4FCHS0SrZUExPdwoXzy9n3+5POHjgU47un8OJfbM5tGc2e3fMJPHil/QP2CUxJ5fWW6n09mQib2otR44u4/Hf/Zj9B5YAN7hzJ4N3J7/I4iWTqCjeyYdvP8LBI/OQhJVvK5xMC/cUCYRl1HdY+PkD1FHjb6d+oBljZwCOySHsZBJ2tAWtIy5qHZPf/B1RUTuBq2SlfM7+3dPlcWhiaDCDka/8ls2bpgPlDPQXcvLYfMaOf4xte75kz4EveGX4wxw/vMJaaCol9AZObyKhq6sI157AoZswfYTTNhN4/1FCl6IxdKBDqI6OYuITz3D42AFOnt7P6XNHOHn2EMdO7ufMucPUN+TgDXU7aWkp4cjBpaQl7gPbsp4/c5Cxo58lMfEkAFfLs1n+2XRmzRrNh1PGcPLUV/j9DYi+eh2eD7Asxnif38L8CZvA3U6j7VwsO8uV7FC4z4dAH6Xc7cxk1ecTmDJ7BFM+HM6yzydT03AeKLU4tQzfbzXGsmfvNEaN+x1j3hzBqDGPcfDQIlpareSI8YGqi4ZzCcR+yeAP/zNDI/8z/uX3MzjhMYL7V2MGVKhMzmhX9wUO7v+QT+e9wcJPx7Bs8WusWDySlUtGsWDOSI4eXkhXj0A/Ku3QdecsxcWb6R9MQBP78iXjGPbCL7h24xRQTmHebl566X6OHJ/L8kUvs3rTCBraTtjXwVsIc2mwLhwm1NjGQPa3loIIGUO9v4MBR7WAlMnjOZAZd9B+iaKCbTzyyH1ciF0P9JNwcRMjR/2MwycX47naFWKcUvJ8Wxnx3M9Y9vl73O4sZM/uRTz19M84evwztMsxThbK5quriSI3Zye9AwX09RcxbfqrTJz8AmFjg7zRWUI+7R1ZlF+7yJXyc1RURFFeEU95xUWulsdw/UY8/f25YHSmIPDrurXv8sns0QwOiflRU2MOY0YP48uvFtPbdwVoprT0LHPmjGPYS48ydfo4UtMPIQngBh5DSfW3dKYgswJDFc73IgGYbFsZebIDa9Z8yKtjh1HdkgAU0NZyjNPHZ5CTvY3G6miyfJsY9tJ9vD39DRpaiwgFi/ClruWLNW+xZt07fPj+MB579CcsWjKGbdveZ+vXU6moPI5WcIZsQhWLGJz6A/zvPkrg8yn4hz9G4Nn7cTL2ILoxuhOgQ5pM+nuSycr8mgtR64iJ20hM1BpiznxG7PnPiTm3mqyMnQwM+vCGwiIcBdc4fWIVjz36U+bOG0dnZz4D/SXs27OQUWMfp6Y+HX9PMm9PfJiTp1YiQUp3FOzgSQ8rBcICskJTg9RTM9RBfa+ygHJxnHzC4UhxvQrOnFjBhLGPcSFqE1DJQG8q/T0+dKHrq42zeGX4A6SmbkXxf//gJU6fXMH//Pv/xr/++B84c3I1/gEVgNOORLjJDoU4lOPQTLj0IoFJTxHaMZtwVylC2xRWzt27eaT7DnL27FZior/m4sWdxF3cRVTUTuIu7uNWU5b9/SUJBII36emqIDBUC9ylu7uad94dzaxZb9LSXMHQYC9r1n7KzNmTyc+PYvasSZw6vhn/kLCEjEsJrcNbHlPaXBPmjxjCDJohOpxGhE6qm+qq9SMkBa3+Q6FiYqNXM2r042TknGTNZx+y4ovx1Dedtq9Tpp0X5AA3GeiP4XdP/Yi/+Iu/YMSoJxkcygNuIvaGKruci1N/lMB7v2No2rMESz4nVPY5Q0t+ydCrvyKcuBdhgkhi6RuIJd23mhMn5nPy5AJOn5nP6ZPzOHdqEceOLiAzYyMD/aoDpDCR7hUUE3ZK2PTVDH77wI/YtHkaUEJr83k+mTmcL9a+T19/Pl8sf4vPN42mufMCWh3Lno2yo3TjXncf0mkK5dL2bTsAY6gJdNPnVIO7ySsibsaoJph6K+fR1+PjgwnP8NTv7mPWJ2N55NH7mfDWk7S2RSOzLUusoJCB3myS49fy7jsvMuylJxj52uNs/3oWzS1peDx+pYxbuJnLFBZu5Y03HuMn9/0jX235BJVjEchYqv2S3O3s2voBm9ZPZvuG99i+/kO2rv+Ijavf5eCeWTTWX8BY+XZjKd83q85RfSMaCdrVXL4Uw9NPPciBQ6vxB27hDzTw8axRLPvsA46d+IqFi94lMXE30jnrQFirfqF/CtJRB1zHoYYgvX/W+/AdD4GV4680uSusXT2VV0Y/S3VzHEODPmpr9jPgT8JjcjSzbe1knh/2KxIzTgBV3O2Mp7buArX1F4i/uJLp014iK2sfLc2xNN46RV9/YsTApwhDFqHaVQSOj2bovfsY/K9/QWjDexh/ISLGlI6slufaYJdFd2c8J44tY/266Xy9ZTa7t85g58Zp7No4je0bP+L86aX09cXjsTzKMaaMIwcX8dJzP2fJ4g9obikAasnK2MlPf/QDxk9+kfPRBzh6YAmP/PaHLFz0NrfbrSewu5ZuqaGWhSRSEIIpDtBI1dBdavuakcNSgEOBZRhoO36NMydWMnHsw1y4sM5+n3Qlxilj7875PPLbH7Njxyf09ObY+cIV7naXsXPHUv7tn/+aBx/4IXv3r7JKnJfxGFBFMi+hCkMD4YLzBD54huDSEZjmbBlGubS1Wjo780hL3cXpk2s4f3o9F86vJypqI1HntxAXs43GW6kor1mCbg0CFwVpa69g7vy3eeW1/yAj8yQQIjHhBLNmjqH0Uirt7U1M/3gssVG7CQdVE0hnCp4GkLHzAFkg6+ObEoDMAHSDMs+eC7tR7oqEifdEVuYennz6J3w4ZxxlV9OYNXUck6c8Q3H5cTlTLm20gIryYyxePJqJk59j5cr3eevtYSxf9RHXqi4gOjaJKPEgnPMJwad/RLjiCP9/e2caJFd15XnPh/nSHTMT0T0d0T3TnrY9TIcdHkd7bAyyARsYGxAwYISEASMQYLMaBAjEIotNMosAS2CQQCxCG9pAEpLQWqWsUlZV1l6lpfY1a8+qylpzf+/e33y497z3igiQw/iDOpQnIiO3ly+rXt579vP/K06gaMGNv0Bm7jdwXnrYrjcz/DQ9tZuCg0vZtGkRGzc+zuatj7Nx82Ns3PAk69YtIlT8MomEwfTxcX0My9jkWIiXX7qPCy/6Li/84R7io8cYGytk2bKb+O73v87+w29w4sQ+7rz9Ku577Fqau3bY7xY8K2sQtaR1DfQChOhzKog5X5UPQNOSHmdERTFYWDIUKRPy5dbpKUHrcro6D3LrjRdzzdX/h6efuYMrr5jF9df/lNr6rfgGQIyH4bhYcMtVfO1rX+Py2ecSHSjAOAl2+p4y22VUjHGSItTWrOQPzy/g6tkX8eBDN9LdY1LTWpAGqKO18UMOffYsn+58mr07n+ezXS+xd9eL7NqxlMP7X2Fw4ChKmyl7AwxXh1HapjGiqWkfCxZcxc2/vozu7iPAGDs/fYd7f/f/aGwqpqr6II8uupGios14mEQe+KGZhjfDkF0I6KKil+yZ0AWkpeeeECYCaOSF5fcy+5pL6egPMTUeZvXK23hkyZ30xkqANlyngYfvvY55cy6g5vgO8OCKzZhzS9N7LFkyj87OQsxFrMSwHh3x2jdNJ0sX7sQBUnfPIvXQpTh9u1DUeFGJ1kesZ1WNppLEdBEloXfY88mrHNq7kqKDKyne/xqFe17l8J4V1FS8RSZTgIC2DfSXsXLVIi655Lv8Ydk9jMcrcd1Ock4VBYdf4bKLv8cD98zj0UfmM3/eJfzj3/8tv5xzES2tuzE581KjzKnFzCBETPGZU8hk4ATdnMrE6UhG0bYLSApiPsZJG7u2L+f2+T9l1+5Xkbxj1qnko4+eY+615/Hm60+QSVs6SV3JxEQZa1Yv4rprL2Lb1hfZt/eP3Pirn/Lm6iWMjUl7nLkXpaRO7iX77K/JrrwFNVmOAVprR3h9IcrgYIQd21/jjVWP89aqx1nz1u95e81TvP3WUt5f+wwtrXvw0zOivMcZHu3g5RWPctutV1BcvAvIMhZv4Y4FV3P11T+hNLyb99e+yeWXX8izzy1iZKQRgyMk2D9d+Omffnv+Xk4LBkeSSd1qo4Y6E4F5hXaZNK3BdSt5791H+B/n/C13PDSbJ579NT849xz+1/e+wYaPX0Rpvxc8ly1j+0ePc/0vz+fg4TVAHZ/te565N/2ErbtfwFF2FkCXoThGtuYBsrP/CbX1TVSuAsUpnNLlZK49B2ftY/b33g0Uk5j+lMKDS9m04TE2rn+KLVt+z0dbnuCjjUtYv24xxcdWkkgetjW3I3bfFdPdvZdlT9/LFb84jw83PIVxELppb9vE/JvP59wLzuGpJTezePE8vvPt/8a5F36LUOlqu/eOYVo/7cyCLrH7bR9mdqCIztQxopmBL7nSp5ec1rSn4xaa47itkcmQValNl5oGhUymgtdevZe5N1xCuPRDoJ3O1m38dsHFLHz4V/b38Auy0e59LFlyBzfc8HOWPXMbDz90LY89dRu1x3dhevqL0RSidYhc7iA9/R+Tzhj2P2jl4Gdvcc015/HOe0vQugFTwzOF3obGzeza8zLbP1nOjp0vsX3nCnbsfpFt259h96ev0tNbYA2ADFwagirooO74Du6481rmzfs5FZUfA900NB/g0v97Lk8vvYu+3hbefW81N998GVu2vEEmF/T4BXZa2j+FIS+KIoZ7RjCC6RB47VimWPLisju44sqLae46ipOtZddHj/CTH/8rTz5zH/sPvM2aPz3G5Zf9kDf+tIicY7wNGRbTupKWlvW8/c6D9PbuAarQ6hiGeOagNQDlKOpQuUqyOx8lfcP3yZauwaUehYyKW4x/HbGzADKyLQMWgmZpBivwcMBtj70+yYdrnuS//v1/5EezzuHNNxfz7tolrFnzKOWV65gYK+JkzRbKi9/lWOEHbF67mAtm/QtPP3srk5MRTKhpcY20gLTJKPkpZDhrknZaczH60r0YFiIxAGX4SKedfLzlOW6cO4vtO1YBXQzHCnn1jw/wo1n/ysrXFtLfX8lArIZEqhiop793N2tev5v17z1p/+dT7PlkKX987W56eg/Zv8Gk7LQ+hVO2gexNvyBz56U4NdtwT0ZwO8pQmVr7eVN8Tacb6ImW0NJwiJZT+2hrOUx7yyFam/bR1nyAyckqfCU9hFLDNDZX8tAj93DF5edz5NBGxuKDjI2P0NZayHO/v5Nbb76Sl5c9wN0LruLr//wPXDfnSjo7hTe4i5lIoF2YwnC3TU19eQooQ8pOAneC1w4ouC6SuqwmlyuhpvYt3ll7D6vfeYDXVt3FrAu+xQ9mfYOd+17CUdLJFSGdKqHh+Abqaz8Ey00LYWpq13K8cSNZ104R6zCKcpyRd8i99n1yt5yHs+FJnAMryNz7M7KP/gLVsN3+xoIGKuidMm8gUeDMWRVtuXshwtT4UR5ZOIf/9Df/gfnzL2H//pfYtXs5ofCbdHRso2D/y2zY8DjvvP0wf3r9Hs773rf4+exzKK9dY9e8DL6ZKWkzOS/Ulua1tunDtKW6cL/wSp9eHK3ozo6SVFH7vSYtY1I0Qmtp5m8SiXIWP3IVt8y/kvbuEDCJ49aw8L4rufmmi3CUj/OvVDX7963gqtn/xvoPlwKdVJet4fb5P+H1txbiaoHCDgGlpBKHeH75LWzduRxFLRCjvPIjrp/7Y15acTdaS4OE2Yv1dR+yadPTfLDuCdavf5J16xazbt1jvLf2YbZ+9CzR6B77GYP/gz5J1mkhHNnC7XfO5p67r6W75zBmCLKL9zc+xw9+eA63/HoOr7zyDNfNuZxvfuufefChBcRGKsGbfJcJYJNGEnpUs/ZHUDh/0e/wV04BmYEaH7K4nL27l/LqK/fQM7AfqCKXCbFz0xPM/9WF3DD3Am6cdyFr311MfLwAo/RlqMMUSVPpo4yM7CSbtUiIbiEG60SmIo1X7SYPkDkyl1zlo6hMBJc6tLTLyUCJbQU1hTmB/Q1ufuEEsIieNiWgVTVb33uQ++76GQ88cDkPP3gZv/nNRSx86Cr27l2BEEYbIxJleryAzRsWUlv3Pka5WpwQAYKTqVxt2tOkpWyKVqJOjJHMIFi4AukC8rtUmtm143luv+USPt2zDujh6KGVfP2//wPnnvcdVrzyKK+sfIJlLy+k7tRGoAInG8bNCmS0QEtUkE0XolwDomX+pm50rpLc6htJ//A/k1k4G+e5BWSfnEt2/RO4cUMbabpuZCBsCMEyN0UrYQXrYubAWIxEIsqKV37P3/3df+FXN1/FyteX8dKKp/lo22oGBitJTJwk2h5iIFrKkQNrmTvnAt5YtZSpyQ57bhmEkfbPYNvp6QfB0jrFqOrCFIGrAzeZ/5DBnpLA8yaUambjBw+waeO9jIweAk7adKIA8omzYAcOCeHXqA5axWlTThSgEqtx3r+I7GP/Rm7xD8n98UrcrrU2L12CgUUQ6AdRVlKglgLtAQTS2cftLyHW+wn333k+v7zmm/zugQu5797zmTv3f/L88jl09ezEN3hmaHPjOwv5ePfjjCV2MXMy2sc18iAZtBmM65g+Qluq+y9UOUZyWtGVGSGhOjFFTYsF5hWBQ2gLu+Lkavhs9zJ+ec2PWPPuE5w4UcC7773A7Nnn88brD9nrb/a660RobljPifr3SSaNAwTlRDs+pLriNTLOnhn/i3LDLFo4h6uu/xkf73ud4ycO8Nzye5lz3YWUlr5rr5Olm/TqBQLFEKRXFSTbRgx8RIV18Dopq1zPrAu/zf/+7jfZuuVFKmu2UhbZTt9AMVW12/hg3cu8+soTrFq1lPm3/oJvf+efePKphcTjTfjY/40YjCKjY0xKtA+zFwdwzoRJYG1JX4y3exStj+I6B8nlDuCqkO1tNgZiYmQnbS0fMDryKTIoY6jgChEMDeV5O4IYWohWhWgVQpBCsVAOSodx9WE7TVlqW+5k1N0M+PhIowJAJzARJkowRcEi64EUmdA6iB+ky9CqGOUW4LphXLcUpYLom+IZimcZ6Pf3Np7fWuYjChqohjSt9GVHGUoNYaZpfXpKn3i8guamD9n76XLaWvcDdZysWcMzT93GM0/fxZIlC1j06PU8teQWamrXBf4uX+H5RsXglkidADpRTgSnawW5Y/fjFD6CKngQt+B+nOOrcFMNNtfeiXjeIIiFMgwmdI12Glh3YrgDBpmcbGHXrjd56snfsfSZhTy15H4WLfota999gf7+Skz76BAwzsjICfZ/tpbm5gJc1YWPfx6MADrxcYCGOf0cQIq46rJ1AxmME6RX2y+uq8BrF5a5jVpyyX1kUztR6hDS820GhUrscaI8ZSK1FLzJXpkpMNAOJg+9H51ah0q/j1YWTdTzvAXkTXCJBBwujEHuFEiHI+ABpBlgOuUWkE7tIJnYxtTENsbi6xgdWc3kxEYcR84vA2Y7UWonWu8DvQ3Nx8g0sLCBaQ8SuhCDNnqA7uQhOtM9X8kAOFrTlx0jrTowe0DqhwK/IbrCDOq5TjGb3n+I39x6Eb+Zfyk3XDuLV19YwET8gP0tBebFEkNRBxSjtBjQMpQ+iuvuNelj5ZPeRNs28vjiOdx00wXcfuvPuOPWi/lk+3P4+0aGT6VJIIQPBSJcGoKyK8VfAXdrZtPmh7ngx//INVefy2/vuox58y7k9gVXcvTYehy3FehD606UGqOkdDOrVt1PTfVhTEQr/L9SDP48im43ioEzYxJYK4FhtlONnpcewpBVC9OXpGBkiCKEIcI+gLRKevj7AgSn7XyBLsSwI9minQ5bQ2CHPSjBTFP65C4GF0TgmE33h7Yb1KAhhvFwhbSlA9RFVhGU2x/eFLWFYQgvfSMsXzYHOQNbRCAfjpubeOAeRHTEdhgYToAUbXRlRulODOFa0hKfT6DCehXFKBXGdctRqhStjuG6YTKZCtLpGhKJKqanwyQSZkJVvH3/mtfi45SId+OzmfmQtC1otx3cFrTbBqrTFqIED6gLPxrwkUBNf36bPbYHPyroQ6kouVw7mUyUVKqXRKKf6ele0uluXLfNnsfUCjQ9uO4QWvdYYxhs/zQL3y+EybDZnwMF0WPrBcK3LOkvmdqUKKnCGsogtLaF8fCgIMI2ujTFU58dToDlZAI4hD9pbjD5g6CJxvMttHUtUfCCOlqEweIR4LhDmF59oaAUzoBDVlkH0jee0yC4RGEMeNoBL63jUS7qLaC34yvfIKDdEfM5baKS7uQBOjPRr2wAerKTTKteRIELtIkU5gUlVwDynFwFXU3vU3FgGS21a0mnDcWmtsZbEbEGWa616dSSa6U5gjPD2IasQS0mlTxEc/VqKg8vp7djA44j+0KG4SxTofBI65BNQVumPS2YQaY2pD2nr57JiSP0926lv3c7XR2baW/ZQGfHZianIvhpaNMskXNOkUhW4DiNGFiUbjT9aEbxSZQGULrO1hp6bQrojIgABP652KSD9DFQYVAhq1jLrIcdwvduDU63toQw5iLKRiuxSrgMfxLRTEiaz5ThsXx5ZBCBjg4dMcrWdgoh6SUKzGbzcN8lPVPqWXoT4ptilIf7742TCx+BJXYgbB8LxkgEjxFM6g7UoSxHsFHqEikIouBxEnTRmhyhe8LOAWhBOxXOgAjByUazKAV/Joj1I16JwBP4IHJaCxWn4AgJQJwQxQsmSRCMShS8YAW1AG1G2esuwPTWiyHQHkOXdO/044esvZ97fRAfJyjo7UTxC7/me7RHOiOIoZJqkte+3ABkdJJxJfWCekw3xUmCRDm+YyKFPDEMwgoX8ddJYPpTUmva82Ql2hMHRyAOivHIibzWyqCREBhowespwHT2SDRbaKOKAu+8Zg1/hokKBMpZ1oU4YeV2fxXZfVCER6noAa8VIGlTH3m3GNiL1nusgTlEy9Q+mpOdfxUDkFC99rrbSVtdaSN1A/ror3FpLS9FO7JmhcdZGNyEre1zfMK60Ch6fRAdaHMVqklPB1CJdgUFVvSUfHdw4jdi9ZuBCjGQDsH9LJ2DQrh0Ap8/o9Ec7+0hSSGJcyX7TYxCH3g0kBYkUfdhkAtOAr0oYuTOBAOgVAlahZB8pPZA0kII9aJ/4crtfRgdyGGKktfC8ymTsF54WIJU8LUqs3l9AZAK29ST8QAE6tl40KX27xCGssNoXWANUomNDAzomkBHmyigECGhwSN6L8WHrLYFOV1lF4HA0Qp+vzATme4jLC+CiTiC4WMNSVppT8fomR7ALBK/CKiJoFQYrUq9a+JR3tk2UWNUBIxKZh5sAVHmDajBRy6sxsBCy9CKFJnqMCByTfgdB4K/0+I99kHguuzNDGcZRS3ef1D5B/GBuvC9+ig+76nAShgDom2U4b8u55D6gkQNMU4bAZBkQnejbU5VexPQYjyDm1eMqWxgcS7EeEptSSY/g4iV4kVL5CU1BfO6j3wrjGMhz8v1Om+0ANMVYOCbJaIO4c8thPDz9eL5S/3gqIluMXDJZu0WYdA9DcyD1vsM2b0+EDAqAcWvw3aPHsRwB5vaQ0fyIJ3pni/BXT29OFrTmx0npbowBVPZL9VmfxJGUHa1l2bzgQ+FDc04aKL8CxGIa1ftJaf2orQYBElpHTaKX8DtdAk+2J04SofQaqdNH0lGQwyp6KQgpH0dPp6UOIm1aC/FWI9SJ9FKmMeEXrLVpH50C0q32H3j30yq0kCka1sM1kIQr7vN+db8YwAADQZJREFUjX5cYmROk/78Ivmrt4EaT/+Yr1B1wIvWgtEf8j1yLZtDjICQO8jotSWGIaDkLd+wUaySo5e0hjlOkPmMN1FpF5go+xLrFYh1l6EgYdiy+X/xyILFbS24ID6AGLoUlFGy2lMSUlC0XTwIf7EtumpLDaePY3qFa0jRQXtmhO7EAEbpWh5iC0alVAlYFFDtQVwL45AUmCWdYTeMDkJSG8YzPWMj1VtlL/wAQovXhABlmdFz68HoRtAt+FylooRtV4KW50HvPKjYJW8f7OuXgq4oeBkek4XfhZ9KkkhBoKalHjHC6cHgUoypHhsBnMIAdon3LtdI0j7y2LQB+62ykvf9PBqo3MtxUlOowIPz9pwYmUA2x2kPRM7CLWiJViVdZOgntQcrLWmOED7Zi9QLTOTtGQHPGEk75wFMtHAUrfeitZDSyH1h4JwF3ncap8tEF52pI3Sne7/0Wp9OclrTkZlmwosAxJuvsnrkmJdO8SdxK6whE4Vv9YZNyYjnrnQBrnsAx92Lxy/sEdwUAvvRUvsQveOdw94raQsOmeun/cjMS/XqInxoaJsO1BJZ14C2WP/6JK5Tj3IFodd0Gpo91I3SjTjuSZSS/SFp1k4Mp4ZtAdWt+I6V7KE+HAZJnWbtf5H8lQ2AKMsQUkQVKkQsJLNPjViIICX6aRSbQ7VGQbDwtc1hKs97D1klbdsjdRiP0lHSTJ7hKbSGQEgkZC5AUki19tiwNTg2/NVhazSEpEbw9YOhYPD7JE9fiGCw4KWISrz/wZsstKTkOuB1pojSko7TNtVnFa4Pj40q842OjthrYZjUfCUj2CnSMiiUdD4ngdlAkp4IIpSKJ3scQ3ZtCbA5hc8NHMzFB9NDYgDMwjQcp7KIZcHK5K5EB8OBc3XM+Lyv1CU11I1PFtNNMBcqqSTNEKYI/CWTwKQY1VEbVdSDnQr1wMG86xIwADZ687uFSgLPwzatUhlwCoQbwjoGnjK3jpGHDircA9L1Jl03IfCw+kXRheznTIHYn1oW5W7SQD6ZTCk+gqdVXp4XaxnFdBifu6DQRgVBEhuDBqo8AyB/3xG6koX0pPu+8Dr/OZLTmtb0FJOqF+NoSNRqnSYdRnvEReLxV1vDWYKf+gnhk/HIewU2urf8BtrUPEzt8Cjo/Wj1CVp9aveuiXQMy2CR9fglZSZT1lanSRSgi+1vJpwOhXjAcZJW1fWgTNrHzP4YeHq0pTXVzRjGvQaUakKpVgzqZxM+CVMXwS4j7TlB0nUXxaGf9JlhAKTAGkJoF41yNcURrUtMF48OW09YvFnr4dv2T4+xR7x7iR6kQKRD9ia99ceQHL7x7oUB7JD9YSrxeEElvyjgcF7OsQQhmTfUlIZgXt6THn6zyKSF1PQvowWB0M4Y6HKk60d7fLOCblhnvX6jLMyCMB0nKTpoTo/SPiWTwGV2MUpqyabAPO5kIb4IRkviuYoyE5wf+X6/u0WLkfBes2ihWqZ924AWTK5R6B+l5bITj7rOSwOZ1I72CsPBWkCPfa8rcKxAPEsUYMHeZpDC9OOnkgR5tA/fIEiKqZ/TMYIldJI+JZvHpGeM0qn0r63N8wsTm2/4BTXUOhSUm7Wii8z73rq1dS3P0QhZp6DQHusz1BmP1ChqrQ1Xr1HI+zHMYRbd0nalyWyAyV8bj1xLTcHrFBJayRASLZu5GVmD+0Fvsd68RT8VKlUK7DmkPlEUOLdE6kVEMyF6s/1feJ3/HMlpTXdmnIzqxOTQLbyytukUXYqZEJZoS9KvUmQtswpbSHD8v9Uvjh9BC7uYtpSdtphtUl5HMMVccfgk03DU/l7HrFE3kYBPLRtCqGf91LUllvJ4B2x6dQYfh2UB04Yb2FDonkLTar37JrSWPWG4gLWdd/HJl2RvSETcjqIP94yYA/ByoBLeBj1NKT6aIowPqSqFMptn9z4vx0s4LR6a5FLDgedBHH/JzUnIJl5xReBYP0/v3+RvKMEP8cVrD3bRyHeIZygKV96v+dx5K5jJ1CU55Uo8j5taHKqZIEpXdprOVIw0rQiXsB9mitdnC+yewilnRton6N0Hc6deKG3JsgnjpzQkD94UuJnhOO0VrZrxieCFMjLY/ikLtwWtWlFuK1pJ4TaYu5fPSx+/FH6FBP7zqR6pIQgMRDB1ZAyCZgD3dAZAZejJ9pKhHb+1ViImWVcS5vv4977HLmtLumvES68IHCPrqCjwHfa8WoqNpfaxpFysp6mP4hG7a5vu0ZKrLsRnCDuEFDXxuoHkPOLVh/ALxNL5UolhEluNyevbc2pJKYniDAfOdcSey6Q2JtwIzdlqhtyvBgXhaE13epK46kBZ7l1h1DPQJ37eXxMxQ52BjjZjFAusgi+0hlA8fWMEDOexUFkKu9kRa5AL/GuO1Pnk9y20BqPYi7qFVQ1dgNZFKMvhPANCRAf1VxVa1+NDT9fYSLoenyXxOFpgHrTsN4mSW829Ns6UtlzYeCnUqPkcTbhEyZ4JBiDtREi7YVKqkpRbTdqpJuVESLlh0m4ZKTdM0ikk4ZSQcKpIulUknEoSTpikW0TSKSHtlJJSEVJuLWknQtaNkHaPkXaLyagwKTdMIhdm2omQcCtJO6WknUKSTpikW0XSLSHpFJFwikg4JSSdMpK5EqZzx0jkSph2ypjIVTLpREi4ZSSdcpJOJQmnhGknxJRTQsItJ2k/O+1UMeVUM+2WM+1WMOVUMOWUMe1GmHYqmMpVMJkrZ9KpYNItYdIpI6HKSKhKplWV/fxxptRxplU106qaSaeWaaeelKon6dYz6dQRzZxiwBlj0lUMOglGiZH1OnkCOXzPGIjREkMkRUyBqZWbKHd5/UTgOOluEHRBGbSSkFMUuyh5GUWXVJAo8i5mksC0oVUL2ulAq2Cbpnjxg5gUjtwP4EcF8roo/qHAcTH8ziF5PgTEcBkjTRb9JQbA0Q6TuTGSDJGlEYXxvgz8xQlc6nCowaEWh3JyVOFQh+I4rn1dUYvDSbLUkKMCh3pyHMehBpcqFPU4VJCmhDQ15DhBlhpSVJKhCocqslSRooIMJfYc1aQpJalLSeswKYpIESFNmKQOk6aIDGVkqCJLOQ6lpHUZ0/oYSY6RpZIUFUwTIUENKWpI6TLSVJCmkhSlJCkjQQVJiklSwBQVJHUVGSKkdAXTuookpaQoI0U1KaqYpowEEdK6miT1jOkTRJ12etxhUn9h14mI0pq+TIqoGiTNcfw6mcXH8qIwU6fRHly0SW9pz0MXLmVpDim0Hn4BGokMQvaxtIZbNAE7HyAGT1K10pWIVwcUBzNij4ngc0eU4XOSSworyAsgxsO0HfvsXwbdU9NtI+Y2q+i7rdcvBqDXKvp2DBZXH36q1UQHDjFSZ4IBGEufZDxbTzzXRDzbwkS6lXi6mXj2FBPZZuLZBkYz9cRSzcQyrYxmm4hlThHLNDCcbWA008BYpoF4rpF4toWxTBNT2SYmss2MZRuZzJ0inm0glmxkMN1MLNvKWPokY6kIo5l6hrNtjGZbGE43E0s1Eks3MZxuYTjZyFDyFLHkSQbTTUSTbfRlGohlmxjONDOcbiKWaWAgfYr+dAOxbDMj6UaGMy0Mpjvoz7QzlG1jMNtJf6aZ/kwDA9k2BjJd9Cc76Eu20ZNppzfbQl+6kViunZjbxVCujcFMA/2ZVvpzUYZyHQzm2ujLdDKQ7iWe62A020lvJkpLMsZoNgtoXA0JskwziPbSHqJcJU8eZaZHLB6zpFuC7ZbBotGIvR8MnKefmQpZsP2HMeBtcXsbsa/FMfy78c89HsPg8YwHXp/CpGaS9v0JIIfh7nUBB5O7l+Oy9n4a09WTsu9N28dJe7xjj02hyeDgkOPL/H/Mu1qh0aQYw2EURZwcw7iMkiVOmjEyjJBikCTDZJgkxxRZ4mQYJkeMNCNMMWzfHyHJMCmGyDKIyyhpBhmjhwkGSDLMNEPEGWKSYdIMME2/fT5AkgFSDDBGDyP0M8YgcXqJ08s4Pfa+g0mGmGSQJIOkGGKcAYaIMkIPUwwTZ5BB+ogRI84AcaKM0884A8TpZZQeYnQzSjej9NJPPyOMMskAcYYZYpBheuxnY8SJEWOIGKOMMcIIw/QxxvRXAoCY8UuQVopxnSXLEH4dSCJAmffowo825SYtlR3gIWQKpWkzXmtmsGXZi2jFkZH6lXxXsLYVnPAN1qmizGxwCKYvhR0vGOUGP9uF2XfD+DzY48zcRyP2+bQ9LoZZ+8KxIfthOnBLoHFOs+6/WP7KKaC85CUvecnLvxfJG4C85CUveTlLJW8A8pKXvOTlLJW8AchLXvKSl7NU8gYgL3nJS17OUskbgLzkJS95OUslbwDykpe85OUslbwByEte8pKXs1TyBiAveclLXs5SyRuAvOQlL3k5SyVvAPKSl7zk5SyVvAHIS17ykpezVPIGIC95yUtezlLJG4C85CUveTlL5f8Ds+kDaLm4tKEAAAAASUVORK5CYII=" width="384" height="121"/>

  师:上节课,我们已经学会了把小胖列出的三个算式合成一个综合算式:

  3+2×6+9=24

  ② 揭示课题

  今天我们这节课继续来解决如何合并小巧、小丁丁和小亚的算式。

  二、新课探索:

  ① 探究一

  将小巧编的算式合并成一个综合算式!

  9+6= 15

  15-3=12

  12×2=24

  生1:9+6-3×2

  师:你的想法和小亚是一样的。出示小亚的算式

  生2:这个算式是错误的,我们可以借助树状算图来解决。

  

\

  生3:我们先要搞清运算顺序,我的算式是:

  (9+6-3)×2

英语+新概念学习资料大礼包

微信扫一扫 自动获取网盘链接

更多资料
更多>>
更多内容

小学英语资料大礼包合集

扫描下方二维码自动领取

更多>>
更多英语课程>>
更多>>
更多资料