2019年沪教版五年级下册数学教案:《相遇问题》

2019-09-23 16:43:00来源:网络

  新学期开学在即,老师们都要开始准备教案了。对于一些教学经验还不够丰富的老师来说需要多看一些好的教案,这样会成长的更快。新东方在线小学网整理了《2019年沪教版五年级下册数学教案:<相遇问题>》,供老师们参考。

  沪教版五年级下册《列方程解应用题------相遇问题》数学教案

  教学目标:

  1.在理解题意的基础上寻找等量关系,初步掌握列方程解两、三步计算的简单实际问题。

  2.从不同角度探究解题的思路,初步体会利用等量关系分析问题的优越性。

  教学重点:在理解题意的基础上寻找等量关系,能列方程解“相遇问题”。

  教学难点:从不同角度探究解题的思路,初步体会利用等量关系分析问题的优越性。

  教学准备:配套课件

  教学设计:

  一、导入阶段

  1.复习行程问题中的速度、时间、路程的基本数量关系。(口答

  甲每分钟行50米,乙每分钟行40米,1分钟两人共行几米?

  2分钟两人共行几米?

  5分钟两人共行几米?

  2.根据题意写出含有字母的式子。

  一辆卡车每小时行45千米,一辆轿车每小时行60千米,卡车和轿车同时行了x小时,问:卡车行了多少千米?

  轿车行了多少千米?

  两车共行了多少千米?

  二、结合实例,探究新知

  1. 出示例题1

  沪宁高速公路全长约270千米,一辆轿车和一辆客车分别从上海和南京两地同时出发,相向而行。轿车平均每小时行100千米,客车平均每小时行80千米,经过几小时两车在途中相遇?

  2. 学生读题,找出未知量与已知量之间的等量关系。

  (1) 你可以从题目中收集到哪些数学信息?

  (2) 学生介绍,教师画线段图。

  

\ACTK+20/V8UsUzZlNS8Y4EmdWQO0JHO0OqleFAuh0B//xbA/H7P1qv783DBD37wvPQ9zpzAzp0v09Ere400KMv1iD+9OG/2eIOzX4fG94Un7hKZiarzc7RH+e+aIJM1041nRpLOvZvcp7C034pOc+T3npJvTzPPNv0dakdIYBHhw4cpoN335Pw+Vb1O/ajtJxAFO/ik0TCSyirgcGYDg4po5uJ9Cc3rVBT12P1xxPQ9z9Ka834n6WOdcbOTxN2wRxv8pz3C+auJ91DPuLlz02L/3d7wUidKsQoITHeTqOSNf+v3viflYIW7D/PlvHeb2ln/7u2J6VuPv7UvY1qf14kUfEXvQO+3na2vOSke7YBdnZ2cybN49QKIRl25iOjWFZj/wchA3vUTm6/sjXoac2KN3i9TzSzwBeLgbG5vXF84xNf979vvKmOgT25z0XGCDuXuC/2k0M5uuuok0d3AHifna8DOL+6aefmDfvCxJKAsu2MVLJup8YIO7fFwbG5vXFqyLuZ33PBQaI+wmLt2H0vC7udUXq4A4Q9/ON/Yt6eQVx7927l3nz5skxeNa6DRD37wsDY/P6YoC4/4b4W0i+pmnKWLH+QPyvuu19IXVwB4j7GWA+8lHopa3uM7y8grh37tzJF198Ie1XT+sdL54l5qbfRjpADq8vBsbm9UVfY/MkH4TfDXGn2n2FUV0csTKMx1eBpquEuGPab9wXfxNHrQRR+vOKAC+WZUljvv8GsZcFMYDiuaKO4rxdX0HgXwX640DRX+IWdv1UR7xnddoQQSieVF5/Jn1vThvP1Ge6gWKbxAwNJ67hxHU0TUc1dFRNw9J0XN0E3SZqanQ6KiHHIOo6xD0XvZc+TnXYEcS9ePFi2fZ0xO33pzBNU0a4S3cCQqT1e6eKi4HEu/SqF8YB9HQ4EnjV9RpAz7FxHEc6D4ogKILjUok83Zg+zxr50ojbr+LzPA/btgmHw9IjzvM86TGXmk9cdi6eIeKwioYKCSSdOtqyLBmKT9d11qxZQ15e3ksnb9Fxwqs8FovJO2kB2QevmrCftk39Je7UyfI8m5TX9YymaRjEDA3F1MH08AyHlkSYdkcljtt9lYxrEXUtDNPC1mwczcZRTJyEidmPqHam2X3Rzvfff8+yZcvkJjQdcYt3QCwehmHIuMcivaqqRCIRef2iGE/xf3FBkKqqv3vP5QEM4G8Nz/Nob28nJyeHcDiM43RLyP15l55VgOiLf9LhqSVu27bxPE8uDOJctK7rhMNhGQYutQJCEnAcR/4UHyGtp1vMhEQupHtN0/jggw84d+4cT6rvi+o4Qdzi1hdBMK+TtP00bRog7pR5bVl4jovaGEBrCmIaFoqioisqhuugAwqQAOI4xFyLkKES1BKo/VB3+4l76dKlvRK3aZp4nicXCn9ABnEUUWwYxcd1XeLxONFolFAoRHt7O9FoNElyH8AABtB/ANy5c4dBgwZRXl6O4zj9XpteS+IW6mJASgTNzc1SdS1CaQpJ2N8IoWoQknYsFuPXX3+ltbUV6L6HW6jgU58rpHDHcUgkEnzyySfcunmzO5/xONRo2sb3E711nAh5qqoK0WiESDQiD8zrho6ua1iGkQTTMLpv9HoCzEdI+rthJIVs7bUNZhr0CPmaPoyrbVtovyPidlPg2PYzj2m6+RFzDJREnKLdP1O4YCedG07Ruv4Ewe8v0XrwKnUn/0r5+VvUlFXTEggQisTQNAvdBgdwARsPy3UwHQvTMrDkmPiJeydLvloszQZiU+pXd4u04uN5Hp7noaoqFRUVnD59mm3btpGRkcHGjRtZs2YNy5cvZ+XKlUydOpVJkyZx8eJFGSzoSQtNXzdfvU7S+ou4oauvsl91+/5e6p9al79V3Z703CfVQ8wvsSm+efMmf/jDH6irq5NrV7oyUkPEPo0a3J82nQr9hUrcQmVt2zaRSIRPPvmEr7/+mvb2dlzXlYuRsIcLW5umafKn53m0trYyceJE3nrrLfLy8gCSKuQnciEhCill0qRJ5Fy/gQdoridhOD3h/74vpMtrOmB7YHmgWQ4xRScaSaAqBoZuY+o2imERcWyijxBxbBTbwTJcLPMxTMPD0EmCrnnoqouheZg6WIaHYTvotoVmmWiWiW5b6LaDbrlJ0EwH1bST0J02BSn5dNtFsxwSuoViWBiOh/WojalwSIblkdxHtofhuhjek2HTszwTr0e61DQO3WPgh+WB5tpPhO46adrlYXmuhO15hHCI6Bal352mfOJqQlOXEB/7JfrkVXRMXk7F1KXkTltC7pzVlHy1mbp1P9C54ziRvRdp/Ot96otLaa+qJ9ISRO1SUCxIOKA4oD2KqeIBu3YdYMP6LUkvneN0b0aDwSCNjY08fPiQBw8ecP36dY4fP853333HnDlzGDVqFP/zP//DW2+9xbvvvssbb7zBG2+8wVtvvcX777/P5MmTeeedd3jjjTcoLi6mvx//YpX6EZsGgVf5eZl1eNVte96P67qvugqv/JM6hk87psLsKbRad+/e5V/+5V/o6OiQmt509my/Fhr6pwEWvivxeFxqDwH5u/9msRdC3MJWHY1GpWS9du1atmzZQiQSIRwOJ3nLConOcRzZMEHoAO3t7WRmZpKTk0NLSwt5eXlUVVXR0NAgbcp+m7eI7zpjxgwuXbxAPBoh2NkhEW3vINaWjC7f972hq7NnPonWR2jvJNrUSqSkhmh5HbHKBhI1LcSrm4lVNCQhXtVEorYlCfGqDmLlgSSES9oJF7URK+skXtmFUh0m1txMqKWazvoKAo1VRFrriDQ3E2pqSUKgvpHOuoYkhJprUlDbI19XYzMdNfUE65uINLcRa+sk3hFIg3binU3JaG/t0TeRzlZCoSZCXc19IhZo6lFeOE26eEcH8Y7OJMgxeIRoWzvBQMMTUE+4s5lEars624kHmogHmokHmkkEWmjqrKOyrIKizcepnLWMrsWjCM8bSnz2REJzJ9L2xcc0zptC12cfE505hcCns2ie9SWNn39F9czZVH8yl9p5K6j7ajN1X+/ir+t289fMHynZd5rA+duot4qJlTaye/U2ls1ZwV9/vc/e/dlMmDCBMWPGMGbMGEaNGsWYMWMYP348gwYN4u2332bIkCHyb5MnT+bjjz9m7NixjBs3jokTJzJ06FDeffdd3n//fYYPH86YMWMYMmQI165do7W1laamJurr63ugoaGBxsZGmpubaW5upqmpSf6/paWF1tZWOjo66OzslOjo6KC1tZW2tjba29tpa2ujpaVFliHQ0tJCe3t7EkTaVKTmFeWnQrSlqalJlt/a2irb0draSmdnJ+3t7bIOnZ2dNDU1UVdXl9R28X1qPVpaWmhra5PtTtcGUQcBka+xsZGGhgbZjtT+rquro66ujsbGRpqamqitraWurq5HWY2NjT3ypquvGENRZ9FuUX5vaGxspLa2VqZraGigtraWhoaGpLrW19enbWtrayutra1JfSbKam9vl/0t5lRqfn8b/f0n0NnZSTAYJBAISLS2tqbtg97mUm9zS8wd/7wV7UnN29nZya1bt3jnnXdoaGjo05dKmHmrq6ulQPsk4hYxQkQobV3XWblyJTk5OZKMBX++EOI2DEOSdlVVFcXFxaxatYrly5czceJE9u/fj+d5smLiYo6Wlhbu37/PvXv3KC0tJTc3l4yMDBYvXsy8efOYM2cOEydO5I033uDf//3fmTlzJvX19TiOIwlcqBQ1TWPmZ7PYt3QR+Xu2cXvHZonc7ZvJ25aMO77ve8OdHT3z9cD2zTzYksFv69dyd9M33M/cQO6WDAo3baJy1QYqVnejatUGSjZsIndrJnlbHuPB5gzuZWxKwt1NG7m7cSP3Nm3ifmYG9zM3k7ttPfe2fM1vGcu5nbmCB9vWkLutuzw/7m3eyN3MDUnI3b4mBWt75MvdmsGDLZt4sCWD3K2Z5G/fTO62zdzbvNGHTdz79hvubfmae1tWPcLXPNj6DXnbvpV9kr/tW+5s/4Yb27/mr9tX9Yk7W1f5yurGzW090939dkNKXTb2GIvc7Znc/n5d39i1jjvffcO9zNR2rUtq1/1vV/Hr919z/4dNNCxchTZjOcz6itiUqXRNnUznJ5No+fwj6ueNI/LpMNRpgwlO/ZCGyaOonDiG2OcfYs77kOic0XR8Pp6mWRNpmzOF5lmTqJ85joaZ42n9YipVm+aS9dlwPvzXP/Af//5n/r8//B/+/d//yJ//9Cf+8z//kz/+8Y/8+c9/5n/+53949913GTZsGMOHD2fw4MH85S9/4e2335YYNGiQJPrRo0fz4Ycf8sEHHzBhwgTeffddRo4cyZAhQxg8eDAffvihxPDhw3nnnXd48803GTRoEKNHj2bChAl89NFHjBs3jtGjRzN8+HCGDh2alE9g1KhRjB8/ngkTJjB+/Hi54RAYPXo0I0eO5L333uPdd9/lvffekxg0aJDE+++/z5AhQxg9enRS/nHjxjFu3Dg++OADWb8pU6YwdepUJk6cyMSJE5k2bRqTJk1i1KhRDB8+nBEjRjBmzBjGjh3LqFGjZDtHjx7NiBEjGDZsWI82pGL8+PGMHTuWkSNH8uGHHzJkyJCkuvs3R36MGDGCUaNGMWzYMIYOHcqIESNkGX4MGzaMYcOGyfQffvgh7733Hu+88w4ffPABw4cPl89PrW/qM4cPHy7L+PDDD5kyZQoLFy5k9OjRDB48mKFDh/aKIUOGMHTo0KQyhg0bxvjx4xk9ejTDhg3j/fff57333uuR98MPP2TEiBEMGTJEanwGDRrEyJEjGTFiBBMmTGD06NG8++67vPXWW0nz9Z133uHdd99l0KBB8vmDBw9m8ODBjBgxgvHjxzNp0iTZ7++//77EyJEje8yTDz74QEKU+dFHHzF06FDee+89RowYwbhx43rMucGDBzN8+HCZT4zD//2//5dx48Yxffp0pkyZwqhRoxg7diz/9V//RUtLS69kLIhXURQmTpzI0qVLn6gut22bUCjEihUryM/Px3EcotEo//Zv/yb/dvfuXYqKiuSd3c9F3EK8F3c437lzh++//55FixZx8+ZNcnJyyM/Pp7KyUnriCZV5VVUVmZmZZGRkkJWVxfXr17l+/Tr5+fncuXOHb775hiNHjhAKhWhubpYXlovdiOgIQdzTZszgxs9HcJprMapKJOyKEuzyZJi+73uDWdUzXyqc8hKssiK04jyMsgLMiiLsqlK0mhJCDYVJSNQVY1eV+lCGWVmAUfEAoyJXwqzKw6zKx6zMxSh/gF52D6viPlbpHYyiWxhFv2GX38epKMapKE2CVVqEVVqYBKcqLwX5PfI5FaU4lWXdqCjFqSjBLivCLCnwoQizJA+z9A5m6d1HuINVlo9dXurrk1KMijzUyjtolXf7hFF211dWN7TyNOlKHqbUpaDneFQUY9Tk9gmz5gFGZR5mcaGvrMI07bqLXlOAWfBXmjcspHrqKJo/m0HnmBkoH04jOmECkRkjCM/+gI7lY2jdMJ2OrV8S+GEtnQe/JXBtI6Hcb4kW/0ii7gxqSw5OzVnsyhPYFcdxak/jNP+CVXACKnJofvgr5WUPKa2rp6qqWkpjQtqpra2lpqaGBw8ecP78efbu3cv69evZvXs3GzduZNKkSfzlL3/hL3/5iyQVQeZDhgzhjTfe4Pjx49y9e5eHDx9SUVFBWVmZRHl5ORUVFVRWVlJZWUl1dTWlpaUUFRVRWFjIw4cPyc/Pp6ioiJKSEoqLiyUKCwspLi6mpKSEkpISCgsLKSgoSEJhYSGlpaU9UFRU1AOpeUtKSigtLZWb/OLiYioqKiguLpZ5RJqioiLy8/N5+PChrFNhYaH8W1FRUVK7BUQ7/SgtLZX58/LyyMvLk8/pC6I/Rf3Kysp69HdZWZlML/rc3x/l5eXU1NTQ1NREZWUlRUVFSX2ert/Ky8spKSmRba+qqqKqqkqW3xsqKiooKSmR4y/qV1dXJ+fBw4cPKSws7JG3urp7rlZWVlJcXMzDhw+TIOoj5o4f4u9ifpSUlJCbm8uDBw8oKCiguLhY9pGYW/455kdBQYGcHwIPHjyguLiY3Nxc7t69K+tw//79JDx48IC8vDwePHjA/fv3ycvL4/79+9y5c0fWQ3x/4MAB/vjHPxIKhbBtWwqPfk70O4xOnDiRkSNHyiNkfR2L9TyPY8eOsWHDBmKxGHv37mXx4sVcunSJrKwszp8/T1tbW5Jz6nOryhOJBA0NDVy4cIHdu3ezYMECNm7cyK1bt7hx4wbffPMNixYtorS0FE3T6OjokIQPkJ+fz6pVq+RLef/+faZOncrYsWMJBoMkEglisRiO40i7eKqqfNrUqVy7eRMXUB1HwrQcLDMZmu/73qA5PfOlwjYddNMhYprEbJuE66LioXte93PtbpiWg+G6aJAEFYMEMRLEJTRUdDQUEsScKGErhGbF0fUYSiKEqoQxzUT3pfQuSbAtt0cdXc9MgdUjn+d221s9wHU8TJHX8VJg47o6rms8go5tm49s9uKZbrczFjrGE/45nuErqxtmunSO26Muqe00LRvVVZ8ABcM1+tUuEzD1OB03d9J0eg7tf11D+Nds9L9eRc87gV76I2rVNuy283jhPDy1HNduxvICeF4HEADiWFhouBhE0QmieAFUghhE8UwFV1dwbQXbjmC5MSz7cZwA/+a0r09XVxdtbW3U1dVx584dzp07R3Z2NgcPHmTnzp18/fXX1NbW4jjOE8sSH9d1k+x0r+rjeV6Svdb/ezobt3AK8n+Ek9HTfMRi+KT2p9r8RXrR1y/TBt+Xr4GIE/CsZT/Pxz8GQjp82fXwp+2tX563Xffv3+df//VfaWtrA0h7dFMcwQTYs2cPGzdu7FGH1HxiAyDiMuTm5pKdnU0oFKKjo4Ps7GxycnKkel7Y00XfCodT/6dP4nZdl5aWFmbPns3t27c5ePAga9asIScnh6FDhxIMBgGoqKhg8uTJXL58WU5oETRFVVXq6+uZNGkSDQ0NALS2tjJ//nxOnjyZ5GUr1O1CaheNiMfjjBs3jitXr3UTt2lJaKaFngLN931vSJcvHTTTQvHntbr/bmkWlv4IWveF7KplofmgWiaqZaSg2/nMcB0UUyeiJojEY0RiMWKJBIqmoRp6v+qmmxa26ybBcpweaQzT6r7Y4lHdNePRd1ZvMB8jzTMNvcqD5gAAIABJREFU28Zy3X6hR/36kaa7HV4KXEzX6RdSyzJtJ6ldhmWj2TF0tx3LacDxanFoxCKG6dlY6JiomCSwPA3L0TFsDc3UUE0N27JwbQfXdnFsD9vxsG0Hy7axbBv70cJmmDa6Ia57NbFMvUdQlXSBW/xBHUSa/hCTIONUpHqx+gPj+L1rxbvrh/jOj/54/PYnAImorz/wj9/jPvWZol9EOanBL9IF/OkNvfVFahtSr6EUeNIzRTr///0nCUT5T9N//rF6mmN/qXX0t6M/gWF6G//e5kxqXf1e2P0JaNJXf6Yidax6Ez778uQWm6CrV6/yhz/8gWAwKO3S6bzCxX3a2dnZ7Nixg4qKCtasWcOGDRuoq6uTdnBRt6tXr7Jw4UJKSkpQVZVAIMCOHTv47rvvyMnJYf/+/YwePZqGhoYeR3eFAPzUxN3a2sqSJUtob2/nwYMHrFixgoyMDLZs2cKNGzcIBAK0tbXx6aefUlJSIiOLiaMp4ujXzp07+eqrr/jqq69YtGgRGzduJBgMEo1GaW5u7tHpgtAtyyIejzNhwgSuXb1KX/V9WXiao0b9gWVZuI6DaRgoiQTRaJRoNCrvyn6asJjpXviX3R+vKjpX6hGxdOht4Upug4lhRTHsdgynC8MJYdgBDDOBYVg+2I9+mkmwbQfHSUdgbtLfX+gc7MPbtDebmEA6Fd7/6+e9X+ZRswG8GjzP2gdw+/Zt/vznPxMOhyV/pb6DmqYRDoclcS9YsICMjAxmz57N4cOHaW1tRdM0EomE3HSoqsqpU6eoqqqis7MTx3FYunQpFRUV/PzzzzQ0NLB8+XL27dvHd999R3Z2tpTsFUWR72q/iVsY1Xfs2EFNTQ2X///2zvxLqipP8P9Unz492l1dXTM9PWP3qakpp7q6PJZVbkApmCypIlguQGayJAmiLIKsIgIiCmqrZRUWgoiaQApC7plkRmZGZKxvX+69733mh4j3Ml5EJJnigtrJOZ8TQNzle++L+753+d7v909/oqWlhaamJo4ePcr+/fu5evUq/f39LF++nImJCYIgwPd9SqVSfJUsl8tx9epVuru72bRpE5s2bSKfz/PJJ5/wxRdfoFT9S656FRLd4/7oo49uieL+thSf55VnZnOK+9ul4Uzct/B8PYlnz6r9s1V632Sfz9Y1bCPmFPcc/xX4uoq7s7OTO++8E9M0MQxj2hW8ruuEYcjrr7/OK6+8Em+du66b8A4aeTWMVtmrVq3iueeeY+XKlSxZsoT33nuPN954gxMnTvD73/+ejo4Otm/fzrvvvhtvr0e+U5T6CopbKUWxWOTZZ5/lo48+4tChQ2zYsIGmpiZefvll3nvvPQYHB7l06RJPPPEEhUIhXilHQp8/f57169eTSqWQUrJ9+3ZaWlq4fPky8+bN46c//SlXrlwhDEM8b2p7QqmpF65lWTz66KOcO3fuR6m4S6VSbAA4p7i/eaZ1IuP6SWbZ/u+T4o7O+pSa3uHEN624G22XzjHHreZm332u68Yr7ttvvx1N0+L33HTjxvM81q1bx7Fjx+Kjk+iYNwiCeKWs63p8hfrQoUOUSiWamprYunUrb731FuvWrePIkSPMmzcvVsqRG/FIad/UGff4+Di/+c1vOH/+PMVikc7OTlasWBEXoGkab775Jj//+c/jPXnPK/s1n5yc5De/+Q0PPvggUL5s/s4777B58+a4UU1NTWzevDlxph11RKTELMti+fLlfPLJJz8KxV3t/z06y7AsK/bL/lUU93RnPzNxIwvImdL9GBS374l6Azh/dl7ivmnFPdtnVlt+5JUwekk0CooQtb+Wm1Xc0dZfdM4aOaO41c94jjkanYU3en9F79/qNABnz57ltttuo1gsJmJSRJPmyB9J5JPkySef5OTJk7EuVCqpXKN6Dh8+zKJFiygWi7S0tPA3f/M3LFmyhD/84Q/cc8893HXXXdx7770sXLiQK1euJOwYqsfWV1pxp9NpWlpa6OnpAcqGaNu2bSOXyxEEAcePH+ef/umfYuu6qKOUUkxMTLB//346OzuRUnLy5El++9vf0tHREVu/5nI5Ll26RDabjTuwOkJStN2+ZMkSzp49+6NQ3I1+SN+Uv9vZbqk2mp3O1uXpj0FxN2rDbN27fpOK+2a3wCNbklOnTnHmzJlY9u9iBex5XuzHX9f1OODQHHN832j0nqsd+5Hh5wcffMBPfvIT0uk0Qgjy+TyZTIZSqRQHmzJNk3Q6TSaTYcGCBcyfP5/9+/ezbt06HnnkEX73u99xzz33cODAgVif7d69m6VLl1IsFvnggw/o7OyMfZUArFixgvnz53Pw4EHefffdOiPGiFkrbs/z4hVvdFAeETUmk8lw+PDh+O5b9Qsp8jATKeO33nqLxYsX8+GHHyKEoFQqxbOL6H5cZNgWWZd6XtkBzEMPPfSjOeP+NplT3PX8GBW3UuVt8sgbViT/t736lVLG4zpaUdzq5zvHHNMxG8WtVFkp/vWvf+VnP/sZ2WwWpcpn08VikUuXLsVW4Lt27eLo0aOcOnWKw4cPc+jQIfbv38+ePXs4ePAghw8fjj9t26ZQKJDL5RgaGopX6gClUolPPvmE1atX88ADD9DT00MYhrF30kZt+UqKO4peFJ1dR/v4pVIpPsAH6kJzRqE+o+hamqbFvlojAzYpZbyyjlYQ1Xdbo7/rus6iRYs4UwkyMuPL0LuxFbifkNNDiHIQDqnK13m8ePUbWRLPRmn6XzH9d624gwRSNjIIFHXpvpriDhrwXQ7UxvV9N4q7vu2zKav6Pu5sAhpUf0bPGoiPXL7qivtGdTeSJXoRRn+iCf2tfkHP8eMmCMrE/55lvkaKW8Zjf+odBeUgI//8z/+DfD4XnzMrVY5sOTw8TDabja8sa5o27RXNqG7f98lmswCxbovK9TyPUqnE9u3b42vRpmkmrpHV8pUUd2QdZ1lWPFCr7zFGDVGqXhFEM46onOigPiqv9owuShcZqkUBSyzLorm5mTNnz6ACheOWz75dz0UIDyk8hO9WcLA8G8t3cIWHrwQikDihxA0DXMp4hAjADQIM36NgmWRLJQr5Irbj4PourmvheTauO0scC9e18Vwbz3Ma4jfg66SrlcHzHJQUNfhI6SUQwm2YV1b6M8L33bo6pfArA0lWUOU6avJK6dehpF8n31Q5Uygl6mhUXl35StTIJpHSr+tLIbw6OYTwGvZ7LbJBG6T0kaKKRJ1uuR9dJ77HHU2yovGQTqfjQRm9MG50d9vzvNgwLdqSi1bDjaIkVd+5rX4RaJoWj+3ac7Xqs/Xqu8OapnH8+HE+/vjjWN6o/uiFJaVEBWXCQBKq6MqerGHqpXxz1P926qirc7q0X1eWWmrvwM9S3q/FLPtoNn2iFKGSVZSfn6pllrKV0yfHdCN5E3fBlUIFAbJBAKSAqih9YYAMFGEVZeUu8YWPL8qLNMcr6wWpFFL5SDU1ef7ww1P84z/+lMnJbEWfTRlKw5SDF8uy0HU9NiaOxlX1Xf3I2Nj3/dgK3fOmjK+jBWsYhjiOQz6fjxfG0+2a1SnumWYtUaSU6oqjymc6m60+v42s5KL/ry2v+rvIWCvaRr///vs5ffYUtmdgeRqOMDDcEiUtg2nm8aSJxMUPLEwENgoRKoTt4JV0nKyNNl5gfGCIwZ4uBr/8nJFzXfT++RM+ee0d3ty6l71Pr+dP217Eyo9jo1MUY0hZwPMMPE+/IY5TxDRzOE4JIQyUshHCxPO0BFKYKGUlEMLA95MoZREEdgLP0+KyZVx2Ug7f1xHCSOD7Or5fqkHD9/R6/EZMySV8HUfomELHlBWEjuvX5xfCQEozQa1sQhgIWYtJoJJtD5RdV1YdovzpV5XpCwOpTALlJMprJIuS9X3eCCnq8/q+judrVeiYld+E9AzCwEMJJx6w0VHSxx9/zNatW1m6dClHjhxheHgY13XjbfB9+/Zx/PhxXnvtNfbt28fKlSu5du1aHKv+z3/+M4cPH+bVV18ln8/HY6bROI4m3NFullKKu+++m5///OecO3cuNsiJvovGYzQGIwXvui4vvvgibW1taJpGV1dX7ItBSoll2dieTVHmsQINVxh4roPvuviulcD1bGx5c1jSxpLWjHg1dfquhSXq0920HMLFEqIOW8gElvCwpDkrmesxsGtolM7wjTpq8znSaPAcGvSHb+HaxhSWgetbOKGLEzg4gYMbuFjSQBdFDFGKsZWBU0tg4oQ1KBtHOgk0x8H0BX5lceW4ksFjvYy83U/6/DCjXQMMXOlnYnSUXCaDUSrhOTa+FHhI/AoCiQg9hGcjlYuHj4ZDQfroKsBhEi+cwK3sIL3//lv83d/+jELWIQg9fGki5dRkt1ahRsq6kU+AagOzaDxFE5IbOaK50c7XV1bct2rLN5rJ67rG3XffzZmPTiGEgxQWQeCglIWZ99AmfErjDpkBnaEv8uQ+GyD/YRcjxz/iyxffpKv9EOazh9Ge2MXY4nUML3qK6wuXM7lgGYWFj1NqWkHx4cdJzV/E2HNPw0QXIQ4WClk1s7sRCpBB+TNyvBcAQoEIpvAluH4SX1bSVSEDUDW4fvk7FZY/XT8584zwZRKh6tPIoF6OWhwPPFEvm6NAV2BEBGALcL36MjyRpFa2Rm2P2l9LbVm1uKKxvI36Uqh6ORqla0SjvA3bFYCvwJXgSPACYktsKF8/aW5uZmhoiGKxyJo1a2hra4vD4F65coXHHnuMefPmsWfPHlasWMG//du/xYair7/+Ohs3bmRwcJA1a9Zw8ODBupdCEASJLTghBJZlcfnyZVauXMl9993HoUOHSKVSaJoWhxesvuEA5a2+XC5HX18fAEuWLGHfvn0MDw/zD//wDxw5ciRW6gC+EDiexJIhOpANA9KBJBeomGyoKCiF5oubQhcKQ85MPlBkq+rNBQq9QbqvJYcggS5A88MEughmJW8jdF+h1WA0aL8pgwSGDOrylUSyL7KBohDUl1WS5e+qyQtJyfOncH00X2KIAL0KQ4aYNRgyxBBBEhlgqiSGnAqRq0so5ixKD21Dv38jxuIOiktbGFv6NOefaOHSqo0MbNrJ5I6XmTz6DoMXexn5op/0tetke0bQR3OEpsTXPBxbIAEJZZfHSGw8opPnd945zt/97X9HL3qEoYcvDAJ1Y+dG3yU/CMVtWVZiq7ypqYkL585iZdP0d3Xy4dsneHXvi5xpPcTlJ49xdfkRhh49ykTzUa482srl5qfpXfosw4tXMda0mrElLYwuforRJY8z8Xgz2ZVLSTffR3b5g+RXzGfy8QeYXPY7xMZH8c8dR7vexcTgAJnBFMXeEQozUOwbpdSXotg3SqF3hHzPdfK9I+T7U0kGxigMjicoDo5TGkhS7B+ro9CXojQ4gTacpjQ0QaEv1ViOmrJK/RMUujNTXMtQ6M1QGE5TGLoxxcEJSrXyXc9QHMtSTFUYy1K8nqE4NNGgjIkEdWUNjKMPT6Jfz04xPNm4/TVl1TE4QXEonSzrehZtKE2xP5Uoq66PpunzRjTKq49kMUZzU1zPovWNYYxMMnl9nHQ2h6MkTuVoCeDtt9/mySefjO1Hjh07xu9///vYLiRKB5BKpbjnnnv4/PPPEUKQyWRYtGgRn376KQBXrlzhX//1X2PFWT1+q8/CLcsinU5z4MABfvGLX8RXLKvtVSIFHO0MRA4mLl++zK9+9Su2bNnCCy+8wIEDB/jP//xPjhw5EgcHklJS0kp4rgcCLF1huy6al2fSSGG6JYwqbKeENDWEdROYJXxjZiwnWafhlvAb5L0pGSwNYRr4upNAGA7CdGswZyVvI4ThIAyvBi2ZziwRWDqhpcUEpp7IIw0P33Tq+sOyS4hEfSU8W8MWRgLP1ZFmCWFqFUoo0yawJIElEiizBqsBtomydZRtxASOT+hKAkciHR9vPEfumQ1klj5BZulSJpc+RGHJH9AWPEpxXjOFB5eSv38x6Xub6f/dGoYfWMvYQx1kH3mB609s58P1W/nLhq2c332Q4Q/+Sv7SBXJfXCT95TXGh4fIFseQ0uDEiWP8/X/7n9imIMSfU9w3QxQe1DAMdF1nWXMzlz46jZkeJ9vXy/ULnVw9fZrhd/Yw/Mo6Bjc9yegzj5L542PorQ9jrH4AbflvKS38f+Tn/ZLUw4sYeuhhBhfex8iyexl7/H76Fz/IyGMPk/njYjJPNzHx+MOMPdLE8NqnuLRtNWe3PMP5jtV0tq+js309nRun5+Kmdrq2bOLipnY+37CWT9e2cH5tK+fXt8V8ur6Nc21rONuyKubMmmfp3LCWSx0bElzYsJbO9W10rm/j8youdWzgi+c20bWpnc4Na8uy1crSUcPGDjrX7Y65sG4Pneu383l7G5+3r51iw1o+S9BGZ/s6LnVs4GKFro4NfLyxjb+0r+ZU+xpOta/hL+1rONfeWsnfFvPpuhbOr12T4MLGqfIudWzg4sb1nGlZxenVT3N6zTOcXv00Z1qe5fO6trdyfm3LDfl0bQvn2tZwes2zfFTh9JpnONe6Ou7LiAvt67jY0Z7gQvt6Pl+/dkYubtxQl/fKpo18ubkj5kpHO5fb1tO380U692yl671D2Pk+gkDFq9ooclX0Z82aNSxbtix2yhNtxem6zq5du9i9ezdQtjMZGxtjwYIFjI6O4jgOmqbx61//mosXL9Yp7iBsfFa+evVqNm/eTFdXF6dPn+bkyZOxxWw+n8eyLCIjmujPxMQE586dY8+ePWzfvp2TJ0/y9ttvMzo6WrVVbuH5PpO5ST5++w0uvvwCmUMdpHY/S99LLQl697TSva9tFqylp4Zre1u5trelhlau7W1L0Le7lf4aGuXt3tfagLUNqJFt73qu7dnMtT2bEnTvTXJt7/oG8s6GNXTv3kr37p10734x5tredVVtbuXavjZGX9vC2OsvkHr9ecZef57R116gZ/fOSt6ddO/eRc/u7fS/1Jagd3dbXb/17Gmj/6XWKXa10r93Lb0HN9D3coWD6+jZu4WrO3dyddeOmCs7tnF5+9YEX+7cnkhzddcOLu9q4/KuZ7m8a1XMpR1rufJSBz37n6d73xau7txE3zPr6Gv+I4OPLCO3rBnz0UfJzZ9H8aEFGIsWYi9ZjLN4CdaDTRjzFqHPW0hp/sPk5y1gdMGDjDzyEIPLFzP47BN0tz7Cp6sf5GzLM3z60ha+PNWBXjzNsTde5ye3/288WwE+nq/NKe6vihAiXokUi0UefPBBLnV2lqWWEoQAXxCEGXw1hDB78Yvd+Plu6HsHul5FfbIP+8/b0N9+Dm3Pdopb1pFvbSK34t/JP3oHxeX/i+Jj/4f8srvILrqP1Pz7GGprxrp4EitzGX+iB1LDBOkB1Hg/cqwPP9WDP9qAVC/+WB9irA811kcw1lfOkx5EpgeQ6QFUehBvtAd7+CruSDfeaA8i1YsY7UGM9uBdv4Y79CXO0Jd4Q1/iD19FXL+GGu0hSPUiR7qRqV7kWF/5c7Sn/PfxKsb6kKODVQwgR4eRo+kaUoixXkRFZlEpJ5gYSKDG+5GpnilGexDjg3iZUfz0CH56BC89gkyPEExcJ5gYmWJ8mGCshvH+OmR6BJkerWKEYKyXIFXFWF9dPjXWF/ddTKoXb7w/gR/1XTWpK8ixrgRq/AuCWSDHu+rzjlwguN6ZQI6eQ2Y+xR07g507Syj7yWTSZLPZeFcJyvdHf/3rX9PS0kIqlYrPmqMV76lTp7jzzjspFArx6vfatWu0tbWh63p5lVsq8cwzz8Qr8Orxa1sOqdE0Pd1DnHjzPf745BqefWY1CxbMZ+nSpezfv59XXnmFF198ka1bt3LixAkmJiZiS1eAd999l2XLltHc3Exrayt33303ra2tvPvuuxw7diy+zlK+0y0JwhDP85kcvUqx5ySydzey+3m8gV14/VM4/TsxBl68IebATkr9z5HvX0++f0OF9RiDW7GGXsIa2hVjDG5BH+xAH9wUY/Vvw+7fgd2/PcYa3JnIZw3twh7Yjz1wIMYa2ENpYGOS/k2U+rcl0Aa2og9uqWIz+sBLGP2vYfQfrfAa5sABrKH6emdmJ1b/Iey+o9h9R2L0wZ3og9vQB7fH1OYzB3dR6ttdxR60vp3Y/ZsSWAObEn2mD21G7+/AuLYBo7uM2b0BrWcDhd5q1lPoeZ5Cz0sUenZVeIl89wvkrm0md+25CpvJXt1G9ssdCXLd7eR61pLrWRczdvlpxq88TebaaiZ7VpO5tJrxxauYeOBxJucvQFt4D/rSu8g8+ivGl/2SsaX/l8llvyK14hd8uv6nXN78CwZ3LmBi/1PkX2vB/HAV/vl21NUdBP27UGNvogpdqPSXyOxVpH0BwgzH33iDv7/9pzi2SxgqfN+54ZnznOKehmjrTdd17r//fj77/PPyNp7n4fp+5dqWwvPD8jmnBE8B2BAaoDQCUUD6RQxcTJXF079ATryPGDyId/ppnPdXUzy+kfTLOxjd8RyZY+tw7U5y5NA8E1yQ+Pi4uMrGFiaWr0+LI0183DiPF9gxfuhiehqaXcD0NGxh4gZ2jCUMNKdEyS5g+jq2LH8vKqYWXujMAhcvCGsI8AJVQ315Pi4KkUDg1aSz8ZTAUyGeCmIk9VafjZF1dTS2GZANSOaT+I37ILDxAmeKRn2EhkcOj3yMoIhCmxGfQiKfRx6JhkJPUP4ui08OnyyuyFYi5jnxavro0aM0NTWxcePGODDBxMQEuq6jaRpKKd58803Wrl1bmbPKeNt65cqV8VUsIQRLly7lwoULCcUN0H1tgPXrnmdJ0xOsfGINO3cc4LPPOtmyZQu7du1quBqHspW555WvY546dSqOUdDc3Mydd97J4cOH8Twvri+yUBdCIHxJIKk8zSKKASRDeBQS+LOiiEsGO0xhh2MVUrhk69I6YRo7GE9ghZN1NKonwKzCQqFjh+M1TGCHWexwskIWO8xgB2NVdY7hMoJPPz4DFfrxGZ9le+tRaAQYCZwwix1MJvDJV1HAJ1+WrwYrHK+jtt+m2lvGqvp7knRd+U44gROO4YTjFcZwyOAwmSScqIdhHIawGcJhGMPu5tLyVVxufpzB1mbSzy8i+9IiUgeeJn1oNfqbG/H/shtxYR/G+Da8zKuowkeEei+BM4EIs8gwS0AWyKLI45KvjP8cXlCOcnnyxFvcfvttWJZZua0xfWzsOcU9DdXWt4ZhMH/+fDorK+6Z8kozILAADyJrhIwTkHXLlp0ysAjR8JnAD7MIVXEMXypB5gphMEZBTlDSMyjTRAYWvjBwPQ3bKWLZhWlx3FLFkrmcpzqIhS8MTCuPpk9iWnlsp4jraTGWXUA3snXfC2kiVYOgGA0xZtnHTl1eXxiowE4gpFmTTqMcjCN5m2DWjj8Cp66O8jWR6nSyPk0DZt8nDRAaniglEEpHheaM+LI+rwyMmnQWnqvwnCBG+AGlkhYbip08eZInn3wSwzDi1aqUMt6mjla7a9eupaurCyC+opVOp3nsscfo6upCKYWu69x3333x1nvUl0EQ4LoumcwkmqbHBp8AL7zwAjt27ChPhhu4LhVCJFb5AMeOHWPx4sW8/PLLPPXUU7S2ttLb2xt/Hxm/maaBCnyUClASlKggJUqqGyL8KCpbhI/wIPCTNCrPs8G1anAkruvjuiJGNpJDhAmkH9aXZVFTlo/rqOT3JvhuiFIeSvkVvIqsM7e/ISKok8+L6q9qV22+sjGkqJFXNm7XzeIE9X1iNeg7R9XJ26g8Vf2sBUgHtC+7MLs7kakuKHSBdRUZmEhl4IsSrjJxwxKuGsVTaVyh4Xkuvl++yla+dli+uiakg1szfgFOnDjJ7bffjmVZ8TXLOcX9FTFNE8uy4rttDz/8cLyamCmvZThYpovnCqQICFQApgRNEhYFKu/h512KlkXJdTGlwA5DPEIkDjIw8fwilp3FtvNIZdcrbidS1vkqahV3dEWoWnHn0PQMppXDdgrTKO7o+29bcWsJfKE3UNxGTbrS90xxazeHZ1G+pzmFED51d1Qb4PteXV4pRV06z00SqHJ8+8g70vLly2PFGTlrGB8fj8/AXdeNj4m6u7tja+/IA9OqVatob29nYmKC1157jS1btjR42QT4volhZlFB+fphoTSBUpL29o3s3r079rdQ+wwji/RsNhtHCfzlL3/J6OgoLS0tbNu2jTNnznDXXXdx8OBBxsfH4ystYRhQvqurUDJACUWgHEIyhEzegCwynKi8gCNGEEEGGeaRYS4mIFuXX4aTiKCGcBwRjlU+yzSqV4V6DVpNWVlEmKkpawwRTpS/i9NlUKFJGJAEaxbtb4wKS3XyiTA9i3ZNJr6P09f20U2TbSDHWLmfEn2SLfdTjbz16SaRgVFWyhVUYCJCAz80cAMdW2k4ysQHnCDEFAJTSSwpMWwP2xP4UiFVgB86WIxhMoYWjlBQQxgig+/5ifFbVtwnflyKuzrE5jfpV3s6ImUdxUTVNI2FCxfGhjczlqFMXKXjKgNPmXjKxBZFTFGk5GtkPYOcZxP4IfghoS8IPRvp2xSkh+05hMJFCAPTzSOkjeebOK6OZZcwrQKGmce0ilh2CcfRsJ0Sll3EcTV8YVaUvYXvm5U4zwaeb2BZRQwjX07raLiegevpOK6OaRXRjRy6US7bdkq4no6QFlLZZaU8I+Ys+9nFF2YCIayKYp1CSLsmnYHvO/i+SPweZq+43bo6GituZ0akcuraMDsMfN/F9xS+J2OECFAynBHhJ/P5nkQ2SFeuSy8jdRxPw3Fs8vk86XSa+fPn8x//8R8sW7aM5cuXs2DBApqbm2OXi5GDor1795JKpeLVc3Rtq1gs8txzz3HvvfeyefNmCoVCw/ukrmegmxl8oSGVgWWXvTl1dGxix44dRDHvG91TtSyLXC7H3r172bBhA5qmEYYh7e3tvPLKKwB89tlnzJ8/nzvuuIOFCxfy/vvvV5xLgFIUKhDxAAAEEElEQVR+ZQciTxBqhEGQcJJRT1BeObsC34uoeL/ybTzfqWCjpKgrL1CCqVVuhXilOwV1cgQoP0wigvqylGhYXm26IBCE1BDIGdo+PYEI6+WTqk6O2nwEwazk/VrIBn0yy+fQKJ3v1Ux6PYGrLDzl4EmBJyWeVOD5hJZNYFqEtgOuj/IDlCdRroN0dHzfxA0VTigxlaDk+5iej0iM/bJSPHnyJLfddlvi+OkHrbhr+S5CR5a39zIopUilUixevJgvvvhidoq7UXmeh+snSaRx3TLTyBJNJHRdp1gsksvlYjeu0eQm8qQTKbKI6EpNdfS02vKjuNy6rsfHBNEVm8ha95ueHN3qH+J/NSIvhGEYIoQglUrR1dXF0NAQqVSKXC4X+wGvfU7T+Veu9u0/Xbry3e4w8W+ArVu3cujQofj2hudNBSkpr5pDRkZG2LlzJ8ePH48dSkgpWbx4Ma+++mpc7+TkJKdPn+ZPf/oT586di7f/b66vGrnOnY6bzfttyDKb8r9JRTDbem+2Dd8/AlXxQhe1NTEJSLpFnW0/RePh/fff51/+5V/id/2tfl80Gu/fe8XteWWjGKUU169fZ8mSJfE533dR93SKW9M0isUixWIxjhhTdv3qYZrWnOKe44bjJvIeGBmZRdvk1e5NI/eI1c9qugAwUaCPaBdstkE/ADZu3MipU6fiMdVodaHrOul0Gsdx4q1z3/d54IEHOHfuXDx5qH6xRG291f09xxyzJVLcd955Z/xbv9UyNZLxe624I/+ukcen8fFx9uzZw/DwcGzpeisVd+QgIzqHt207VrRzinuO6YhWrNHzjRRedO2xOkbwbJ7X14ncFm0N9vX1EQRBvAVeO86ju9zRGIjku3jxYnwOGBm2Vbt3nIsaNscPCYADBw5wxx13kM1mCcPwpoL2fNsyfu8Vd7WDdiEExWLxO1vpz6S4I69WkeVvxJzinmMmonMzKF+3ihRhte/+6fz3NyrrZhW3ZVkUi8V4S/tGwQ2iFX8kd7RrEMkaBU6Jyg2CIA4cdKv7e445ZgPA2NgYFy5ciANpfd9+vzdU3I0M0b5r4zTP82IFF50bzyagybeltKMY5KZpJry5RXdtI2Veq7ir+yp6yTV6KUeTgupVvOM4ibTTtb16gvBVudU/xP+q1AYgmC7gwEzP6+s8V88r37+uDqAwXd7qqEdRONFIYUcTj2gSEkUK/D6tVOaYYyai3zcQv6e/zjuyOoLmjWgkR22a2qOohor7VqxoZ1oZ3khxfReKO9oKr94SjxR3xHSKe7aTlNo6Gin4RtzqH/wcP0y+jmKtDlX5TZY7xxy3iq+ze9WI2b77a/M12lmtjjXwg1Hc30eqV+G13Izi/jrc6h/8HHPMMccPnR+a4v7/8YC0PmYGtmUAAAAASUVORK5CYII=" width="600" height="81"/>

  (3) 分析: 设经过x小时两车在途中相遇,那么客车行的路程可以用80x千米表示,轿车行的路程可以用100x千米表示。

  (4) 寻找等量关系:客车行的路程+轿车行的路程=沪宁高速公路全长。

  (5) 列方程解决问题:

  解:设经过x小时两车在途中相遇。

  80x+ 100x = 270

  180x = 270

  x = 1.5

  答:经过1.5小时两车在途中相遇。 (检验)

英语+新概念学习资料大礼包

微信扫一扫 自动获取网盘链接

更多资料
更多>>
更多内容

小学英语资料大礼包合集

扫描下方二维码自动领取

更多>>
更多英语课程>>
更多>>
更多资料