2019年北京版五年级下册数学教案:长方体和正方体的认识

2019-09-26 18:00:00来源:网络

  教师板书集合图:

  

\ACTJesnQw5g9Ve4qwOgr8AwjJgiJp9fX1165d2717t66urrq6up2d3dGjR/Py8shkMn/UpgPiEAyhUAjN9x88eDAa13pJGlNO4PF42dnZlpaWDg4OgLqTEJ0dhv8iLm5lno2MWSImyixFIhGbza6trb169aqPj4+ampqWltaePXuKiorwTu4QuUPK+o8S/hKsUgJZ3qLBJWmj6mIOQ+iuxRgwGx013OyUYABY3Kzicrn19fUJCQmenp6mpqampqaenp6XL19++vQpmkuNfhYFr0Yiv3CrUiQSbd++3cnJKS0tbYRbMRIa6xzzmTNn1NXVnZ2du7u70Ub8qZMgHhxHH+oOIpGMyu2pVGpBQUFAQMDcuXN///13e3v7+Ph4YD+QhaMaJfwLES4++vr60tPT3d3dVVRUVFVVN23aVFBQAMElJFxA4fB4vJGPZ0c+T1hYmJWVVVxc3Gu8r/+VxjqfEBkZqaWltW3btt7e3pfnBPzQy0COUe8gXFo3NTWdPn1aV1d35syZ+vr6J0+ebGxshKAt+qlxBz9OEJIMbsTPZrPb29vT09O3bNkyc+bM5cuXR0VFQQIYtacHHO5Idg9X4CKR6NChQ2ZmZrGxsa/vtv5nGmvr6ODBg3p6env27IFWuGKsBmUYwkP1eFpATDSDQJiigYGB58+f79ixA6Ta9u3bMzIyWltbUWYNPT/UhOINJ9CiIqLsAeJmPT09Dx48OH78uJWVlampqZ+fX05ODnwG4mavRaOKiGZ+Bw4c0NbWPnHixGu5o1ejseaE0NBQGMAKIXnkbg6/rXj0BvdK0cMDedba2nr9+vUNGzaoqKhYW1ufOnWqvLwc2rAJiVnCeOxl9EK3fyFCxxF5/AKBABAora2tiYmJmzdv1tPT27Bhw82bN3t7e0HivJYgh4jo+hMUFKSoqHjo0KFxtFfHOna0f/9+GOIN7S1eMhslGlJ7JcK6BsEvtLS0nD17Vk9P79dff92wYcONGzdIJJIYq2yExywkyqPGxbudmITsdbRFqBSJRCKlpaV5eXmtWLFCT0/v8uXL7e3tKDw1wuuiZ+ft7b1gwYLQ0NA3hRNEIlFERIStre3/ygnSwagbZKqiDnDt7e3R0dFaWlo///zzxo0b79+/39vbC/IGXQjFTNBiJnWCFGvHIsZKakDQ0Ol0wHQ8fvwYDquBgUFcXFxra+sI1QIe8BAIBK6urvPmzQsLC3tTOEEqlZ44cQKGVQKiAZdGw38RDx+JiNJ1+JtOpx85cmTx4sU//vjj1q1boQCKSqWCKwLb3d/fD6XAQmx6+cil2t+AQKbALkFNEoy9QScVXmxpaYmKipKTk9PS0oqJiQF9+8oXxVUQh8NZv3790qVL3yA/QSqVnj171tzc3N/fn0qlCrBe2S8TPhITbdxRrIPL5XZ2dsbFxa1cuXLBggXbt2+vr6+H1yFXAMkK1FlITOAu0cS3sbnriUySwbkaMdGQBjXkBN4QCoV0Ov3kyZMaGho6OjqnTp0aSRQVaWkQZGvWrFm1alViYuJrvK//lcbaOrpw4YKRkZGnpye0DpdgWdJhvogDj9FIzP7+/ubm5jt37igqKqqrq/v7+6OZp1D2BSEOXPuLsQ6Nk34CEL4/Q3G1AK/icDhUKpXJZHZ2doaFheno6FhYWNy4cWMk10UNaahUqomJiaWlZXp6+uu6qVegse4GefPmTWNjY2dn5/b2dgHRJ1SEVW++kMQYPAmV/zOZzOzsbH19/QULFvj5+RUUFNBoNDTjETqz4z+C1P3LLBVF2Ye+hSIeKJiIx3Nx4Sp6UdYZ9XRCGgkpKzQ2SkqEy0TE2E8RVpmA/FoRUWY5Ev2GK4ShPhvCKUHnP6FQ+OzZs4MHDxobG5uZmVVVVaG+nbi4eZlNRsUe1dXVUF6Xk5PzarfwWmhMOUEoFD58+HDt2rW2trYVFRVgqCAszfDfFRHdkEREmWVlZWVISMhXX33l4uICTbYFAgGe/RkJqBg/0+i5IsGJoGMirDUqABPQYRINhoiiP6BiDtAQYqIjEILKoRMvIBrKwyQRJKQRJ+Aw7FFtHYtuBNiPy+UWFRXt2LFj6dKlgYGBNTU1oKWFWJu2l+QEeF7379+Xl5d3dXUtKioapVt4GRprP6GystLNzc3c3Dw1NRXsUcFLzFbBRayImFt+/PhxTU1NXV3dO3fukMlk2Fk0rxY8ihHmztB14b+iwbA2AdE4HkwIxAnoMzI/gisQkIjA2yjFgaQ+ktAQ0BQTsB/0lhSb3fjyiu7VCGlstAASiZSUlOTo6Dh79uzo6OimpiaE5RYSLSuHXxK6OxqNdvXqVSUlpeDg4Nra2tG7iz+lseaEnp6evXv3GhgYhIeHw84ONWOGEkodwB8MBiM5Odnc3HzhwoVnzpyB6TVCok+/jHEyktWiEwz/xR0MGSEtwUhEVAC/cCX4QUfmEARwUDRMQpQEsVgsJGLBfBJgQ99kGGwkdzoM4ZcQEc0nSSTS5cuXv/jiC1NT07t370LvNiExBfRPQyBoD9va2gICApSVlc+dO0cmk0fpFl6GxpoTBgYGzp07Z2houGnTJtjcl+cEETF1oq6ubteuXWpqaps3b25vb0f2FQ6uxsXnK5PMIRYR6TwwndHhQBWeMAoNFinBgl1CrOQFzeMBfYgfazFRUYB0DrqKFMPq4HYRUkqjZx0hVoegHFyax+M1NDQEBAT8/vvv0L4NGBvAXbj4eCHB0+Tz+WVlZatXr1ZTU7t9+zabzR6lW3gZGod5zKmpqWvWrNHW1oYKKTQtYRgSY5UAQqHw8uXLxsbGpqam169fl8Hii8ViVJiCGzavRkju4r8vwiZt4guDE4lwHBJiKibeIhdhOZE1JZFImEwmQgeKxWI0uxu5xTxidCfqNY2PnEJQlJHc6TCEKz00F0ssFvf391dVVa1atcrMzCwpKQm/0z+VQXBfLBYrMzPz559/NjU1ffTo0eiVqbwMjUO/o8LCQmdnZwUFhczMTMCxvIw1DwJSLBZTqdStW7euWrUqMDCwrq5Oxj6BUyIgerq88ubi5oeQKI6RYGAnlN4WYdBAGEErwLqw4GzAYrFaW1sbGhrodDqoBVgwtN4AxQKWEpvNrq+vLy0thfYfoEDKyspyc3OpVKoEmxWNFjlK1hGuFZECRA40j8c7cOCAlpZWcHAwiUSCZQheouMT/GxXV1dsbOwXX3yxffv2qqqq0WPml6Fx0AkNDQ379+9XUVEJCgqqr68HA2D4b8GmQ4lZUVGRtra2ra1tWloamsqKZLOQmOopJYyZV1unZHB8HZyQvr6+3t7enp6e3t7erq4uMpnc3Nzc1tbW1dVFIpEaGxtzc3OLioo6OzvhuhKstIXP5/f09JSXl0PlNIDSRVgfWFCPcMK6u7svXLgQHByckpIC6oJCocTExPj7+5eXl0uwQhzp62hWNwwJsJaS+M4gTnj27Bm0as3Pz4dngQYDDE98Pr+8vDwgIGDGjBmxsbFQrzIat/CSNNaVOmKxmE6nJycnW1hY6OnpPX36FHVSGOaLQqK8GIAVCgoKe/fuBQ8BSVZUf4ye00gOh4ToqwVGiFAo7O3tzc/PT0lJuXnzZmpq6q1btxISEo4dO3bq1KlLly7Fx8dHRUV5eXnt3r07JycH2feoWhf6CTx9+tTY2Njd3T03NxdcCGBvaP/II8ZR1tTUeHp66uvrx8TEgCZsbm728vIyMDDIzs4G56qvrw+hJEbPOkICXjI4VQIECO2DBw/a2tqeOnUKjDpImPzpLzOZzDt37lhbW69cuRIKCd8g6wgZEhUVFTt37pw3b15xcTFswfC7gJoLNTQ0rFmzZvny5WfPnmUymUKhEMZ9y9hIyB995aXC76BYDY/Hq66uPnr0qJOT07p16zZs2GBra6urq/vLL78sWLBg1apV1tbW8Iq9vX1qaipM3QTLB4wfHo9HpVJramr09PRWr159/vx5aI3c19fX0tLy4MGDJ0+eANcxmczHjx+7ublZWVmlpqaCbVZfX799+/Y1a9YUFBRIJJK2trba2loymSzChnO+8s0OQyh/B3IBFTCg4BiLxUpKSlq/fr2rqytYfS8pg3p7e8+dO7dixQpra+vOzk6JRAKMPRp38TI0ppyAkrKdnZ0xMTG//PLL4cOHGxoaEN4L90pF2PwEiLcIhcKWlpYlS5Y4ODhkZWWhCgfJYMgGzhWvvFRk7yL5x2az29raWlpaWlpampqa6uvri4uLNTU17e3tU1JSmpqaGhsbm5ubW1paAPnX39//5MmTmJiY8PDwffv2+fr6urm5bd68+fvvv585c6aJiUlQUNDp06f37t1rbW29YsUKZ2fn/Px8uPezZ8/q6Ohoamr6+/uHhIRERkbu2LFDXl7+l19+cXR0DAkJcXR0NDY2Dg8Pb29vfxkPdST7gO+qBCMp0Xi4uLjY1dXVzMysurpaROTLEc9QKBQU1RBjAeiCggIPDw8tLa20tDSAY6Jc0LjQWNcnwKbQ6fTMzEzou5ifn4/AjyJsYAcKFCKHFeDBM2fO9PHxKSsrA2ktHJ2ePIjHxFhfYZS8Az3W09OzevVqZ2fngoICMTEbCo2Kg9DK1atXz507d+bMmePHj/v4+BgaGs6aNcvCwiIsLOzixYs3btw4fvz4sWPH9u3bFxMTA7MoGQzGrl275OXljY2NT58+ffLkSXd3dwUFhU8//XTq1Knz588PDAw8fvx4VFTUvXv3yGTyOIpSCVEru2vXLlNT0/z8fBEB64JnLRaLISKCGnELiSaC165ds7a2dnR0bG5uhg//aQhxVGms+x1BkASi0ceOHVNVVT137lxHRweeVJJiYVMkgUQiUU9Pz7Vr17755puQkJDGxkY4pi/jcL8CIcWC0gWwhvb29tLS0oqKir6+PhKJZGJi4ubmlpeXB0k9Go0Gdj/wTF9fX01NDcyJqqiouHnzpqGhoZKSUmho6L1797Kysu7du3fhwoVnz57V1tY2NzcDYKS6utrU1HTx4sXe3t6VlZWVlZXR0dFKSkpTp0599913f/rpp8OHDz979qytrY1KpfYTNMJ48Uh2iUqlHj582NLS8vbt23DjKNCM5BoEBgQEtbS0hIaGrl27NioqCqLJEIQd+1tANA5z1kAqsNns4uJiLS0tV1fXR48eiQhYGzrWMupYJBJ1dHRERUV99dVXkZGRnZ2dcExRc9XXSxICDoQiPBAVuXfvXnh4+Llz50gkUmdnp4WFhZ2d3YULFwoLCwsKCnJyclpaWmBJQmJeBp/ohltTU2NoaLhs2bJ9+/YlJiaeOXMmIiJiz549FRUVCC7V399//fp1RUVFJSWlU6dOgShNSUnR1NT8+OOPP/vss2XLlvn5+dXW1uKt3sFleu2b8KdbJCECyufPn7e2tr5w4QKS+qAhEVQMZUsEAgGDwYiLi1u/fv3WrVuLiorw0MIY3wJO4zNdCg4KlUqFVDEIBuGLhomgvJVYLCaRSEeOHPnpp58uXbqE5hHBXo/GUiFwJCI6bIN3GB0dvW7duj179nA4nL6+PkNDQ3l5eSsrKw8PD3d3dy8vr5s3b5JIJIFAgHqnIhlZU1OjoaEhJyfn4uISFBTk7Oysqampp6d3584dEokEVkRvb6+fn5+Ghsbq1aujoqJoNFpjY+OmTZtmz579ySefLFiwAGJKUFIMC8Pz0GNJEiK8JhKJrly5sm7duqioKBxOKxKJUK8A/FHW1dXZ2Njo6elFR0dD2EBC5F7G+BZwGmtUNp4W5fP5BQUFhoaGNjY2GRkZSL8LiJFbQzkhMjJy7ty5KSkpCJAzSocAdw0FAgEkLkD4OTk5RUREiEQiKpWqq6urpKTk4eERGxublJSUlJTU1tYGBgBy6KEEnsViPXz4cMmSJadOnWpoaGAwGHl5eRs3bvTx8WlubhYTc9zIZHJCQoKvr++GDRtiYmIg4mxsbOzm5qampmZkZFRQUGBlZeXm5lZSUgJ+OeDbx4UTJETjtkuXLllYWBw7dgznBORrwR7CPHY+n3/t2jVtbW1XV1fkX4kIvP0Y3wJOY93bAmlJONxsNjsiImL16tXu7u4dHR0irDoExQfRZpFIpOPHj//666+3bt2CozkGa0ZJPVg2NIqLjIxksVgUCsXS0tLR0TE1NbWnpwcmz4IURLlnBNojk8lXr15VVVVNS0uDer2ioiILC4vDhw+TSCQp0WOCz+dTqdSTJ09u2rTp0KFDBQUFW7Zs8fDwOHfunKOjo6Wl5f379z09PX/77TcXF5eHDx/CaNpRChv8KUmI3HlUVJShoeHp06cR5hztAHrikIMvLS21tbV1dXVNTEwEE1cikUDIZFxcHURjXZ+AQ1NgFx4/fuzq6mpsbHz16lVUvoPKWVCACPCPp06dmjlz5uXLl6lU6mvJoP0RSYj0sICYlw5sefnyZWdn59DQUCqVSiaTLSwsPDw8Hj9+DHeEkBGQDkMszeVynzx5Ehwc7OTkVF1dDenk7OxsMzOz+Ph4EomE44jodPqFCxdgRGdAQICWlpaxsfHGjRuXLVs2d+5cBwcHKyurr776asGCBbt27SopKUHNLV/7JrzMLkkkku7u7uDg4FWrVl25cgXVKqCIH+JSKMoJCwtTUVEBxYgQVjDO5w3KMYvFYoBqSrFKKyqVeuHChXXr1tnb29+/fx9Cy0KigBCleCFqGR8f/8svv8TExKBw02hzApxseJHH48XGxlpbW3t7e9NotO7ubhMTE3d396KiIlgtl8vt6emhUChg9NPpdHjA3d3dCQkJDg4O58+f7+7uhih7UlKShYVFRkZGT08PBF7hcgwG49KlS/r6+mpqav7+/v7+/r6+vlu2bFFQUJgxY8batWt37drl5uZmZ2e3f//+4uJihGl97Zvwp1sEQq2pqcnT01NdXT01NRVN5UHIF5RYIJFIiYmJOjo65ubmMHNVSHTkRzXTY3wLOI117Ahwl1KibzgI3dra2v379ysoKISFhTU2NuJNz+EkwTYxmcysrCw5OblDhw5VV1ejTccPAW7fj2SdSGUJiPJ2Go1WW1t78OBBfX19R0fHmpqagoKCVatW2dnZJSUlQWYN5hLk5OTAcafT6cAPDx8+DAkJ2bJlS319fXt7e0NDQ05OTnh4uK2tbWFhIYPBQMcFzkR8fLyJiYmdnd2DBw/a29ubm5vz8vIcHR21tbUTEhIqKytbWlpKS0ufP39Op9NHz1kCEosHQdPRtUDpicXi8vJyR0dHNTW1vLw8vN4IYWEACpCbm+vl5TVv3rwTJ07U19cjCCOU/gFfjdItvAyNNSf8ERUUFJiamiorK8fGxra2tkK8BeFwQM/yeLyamhojI6OtW7cCbgeZT3i4Sfw6sJlg6sCz4fF4HR0dmZmZoaGh69atU1ZW1tHROXjwoKOjo4KCgoqKysaNG0NDQ8PCwjZv3iwvL29ra5ueng7KhMFgZGdn+/v7e3l5ZWVlicXiioqKo0ePWllZ6ejobNu27cmTJ319feBkA9uz2eyLFy86OTkdOnQIKmBA7np4eFhYWDQ0NCAzDFUmjfx+h9kHyBLCwZUMDonCIc7KyrK0tDQ0NGxoaEBsIyAKEkGaVFVVhYWFqampGRgYNDU1jX3M909ponAChUK5cePGkiVLjIyM7ty5AzkjCZFCRrD4zs7OjRs3mpub3759GyGT8ZTca9QJYMVKpVIej9fe3p6ZmRkVFeXv779t2zYvL689e/YEBwf7+Pjs3r177969+/bt8/PzCwwM3LFjR0xMTHV1NYwmiI6ODg0NPXPmzOPHj0Ef9vX1XblyxcHBwdbW9tKlS4A/RWcaOCEpKWnPnj0XLlxABQl1dXW+vr4ODg7V1dXoBlFUDUzK1/MkBhN+7pHXhCcNBAJBdHS0lZWVv78/KCiQX2Kilx64ASdPnlRXV9fV1c3Ozh5ffNEf0UThBIFA0NHRERkZuXTpUkdHx5ycHAEx0AB5kyKRiEKhXLp0ycTE5PDhwy0tLahRNjoT+G/C83u19SDhJ5VKATLQ29vb3NxcW1tbXV1dU1NTV1fX0NDw/Pnzmpqapqam5ubm+vr65ubm6urq1tZWBoPR39/f3d2dm5tbUFDQ2NgIpQtgPbe1teXn58O0DjhMTCaTzWajWFNNTc39+/efPXuGogs0Gi05g3ujCgAAFZFJREFUOfn8+fM9PT2I80XYAIRRcjdx7LeA6KsJBIZNc3Ozh4eHra1tQkICYmZkGkFx0pUrV8zMzLS1tSMiIhgMxvh6xn9EE4UTRCIRNFrbvn27mpqaj4/P8+fPoRoQGpQjb7K1tdXGxsbR0fHevXtCbHgwrhmARsgJ6HHysQbDKD6IHHocWIbCXCgCRqFQwG/m8Xh9fX1gbEBYFgQ5/AKaCgUqgsVi9fb2wqEBU5vP57e1tYF5LcIaaiAYyChJWRSWEBBlelLCc4C83o0bNwwMDDZv3vzkyRMhUT2HPsBms9PS0iwtLfX09Pbv319VVTWOka7haQJxAiRWCgoKnJycDAwM9u3bBx1E+MSkV7CMJRLJjh07DAwMjh07xmQyBVgjPcQMuKX0auuREChAvLE2zgZCrIOLiCjdBFsOrQQyXxAs5/F4cLLhxPOJeeAoeAp+BbA9DxtwCM6DAOuFgRYwBggFJGhQRBjdHWQSIGp04MABMpkMdhoqnWUymY8ePXJ0dFRXVw8ICCgrKwN5N14oqeFponACOrVMJjMjI8PBwUFZWXnfvn1dXV08gpBgPnPmzJo1a9zd3UtKSvCkEjolI3cVJFg/evTg0TLQYYW3kIyXmezN5/P7+vqgpAbJS9AAMBcdDGukRlCcAMqd0UqAHxBviDA4g5CoExjxExhuK0RE1k+AjWoGaLC6urq1tfWdO3fgLRhzCuCi/Px8Ly+vJUuWeHt7FxUVoanPwFGjt+BXownECSBiaTQal8vNyMgwNTX96aefTp06hfwBqVQKUqeysjIwMNDY2DggIADMCdyJRJJ7JCpYIpFwuVwOQSDIhYM7eQFjgBuDro6CXXDWRYMnfuMOvYgA9vX19cGQB3gdsYRkMOGqZqgafH2PQnYfYD/hbwgiwUWbmppsbW0VFBROnz7d1dUFxpKQKPbPyMjYsGHDggULbGxsCgsL4Yuo2naUVjsSmkCcIBKJwNrh8/k0Gi0tLQ0wzBEREeXl5f39/VLigA4MDKSlpdnb2+vq6qanp1MoFAR3kWD1DCPkBNzzEwyeQguWDGrgh3QFyH4h1tObTwxvFg2OLcKH+/r6cNMLfgcpFvgw6Afx4CoZvE51VNNqiOGlBCeATmtsbDx79uysWbO2bdtWVlYGL/b09IjFYhqNlpmZuWXLFnl5eQsLi8zMTBqNhuxbJpM5AZ0E6cThBCkRokEWcFdXV3JysqmpqYaGxoEDB6qrq8XEQEGRSNTS0nL06FFtbW1nZ+f6+npgISk2dnKEOBYJ0YBVTJBocK8XOMpw3BHjoRMPrCIhGnjxsH5YqPkFKknFIy0iot0qYich1kgC1bKgUD1yqV/PM3jRPsB14VrACV1dXVeuXLG0tFy9enVGRkZXVxfg8FgsFp/Pv3fvnr29vbKy8oYNGyAgjge7+US381Fa8CvTROEECRYMRUYzmUyOjY11cHAwMzPbt28flHTxiVnzhYWFO3fuXL58eURExNOnTyF7j3Av8GwkWFxF/Ae50j9aj3DwzGP0dfSKYPDYZvxaIqKzL8hsEYZFw7+FviIaXNyILoevB/YE/isgSvglryNwJHlROlJCtMxBHhFsPo1Gu3///tatW5ctWxYfH9/Z2Yl6EXR3d6ekpLi4uKxcudLJySkzM5NCociYcxICxjKSBY8GTRROQA9ejHWUEAgELS0td+7ccXR0NDAwCA4OfvLkCRgbPB6PTCanpaXZ2dmpq6uHh4c/ffq0r68PBiMIiRFSuBktwiCikpdry/MmEO5c4S4NvAKSBWktLpebl5fn7++vr69vZ2fX3d0NwSIOh9PQ0BAfH29qaqqtre3h4ZGVlQXCSDhOONn/lSYKJ0gJIY0UqIDov9vX15eVleXh4bFy5Up7e/uCgoLe3l4Wi0Wn0zs6OvLz8zU0NLS1tUNDQ8vLy4F/kL2OBDOyatBVXrIZyd+eRFi1ILI/ETgUyW+RSMRisaqqqvz9/VVVVa2trbOzs6FtB4fDef78+dGjR9XU1ObMmePr61teXo4e4lBVMzGd5onFCTIiHC/7qKys9Pf3nz9/vqKiYkxMTHt7u1QqBY188+ZNfX39VatWxcTEiIhJqUiGQUyDxWIBlB/ZrBPwYYwLibDhFZDggwAueAgAe5FKpTwer6mpydfX9/fff4epH2Iit/3s2TM/Pz8lJSVFRcXQ0NDKykrwoF641chGGpebHYYmECegqLmYwDgg7BeI8JqamqNHj6qoqCgqKvr4+BQVFYHgZzKZMKpHWVl5165dzc3NaKoaMkxFREpIQAybmoCm6rgQ0pkgOFCcCjLEECbu7e0tKCjw9vZWVlZ2c3ODeB2bzSaTydeuXbOxsVFQUDAxMTl//jyZTIawMh5tk2AJn6EOyQShCcQJEiIej0IxYgKPDQKexWLV19fHxsauXbtWVVXV3t7+6tWrFAqFyWS2tLRcuHBh7dq1K1eu9PX1zcvL6+7uhiAM6qogxtDCuDc8SYAgQi4BBP4hegtxi/T0dA8Pj+XLl3t4eNy/f59MJjMYjLq6upCQEAMDAzU1NRcXl+vXr3d0dCBT6oXbK6P2JxRNFE6AAyolzFb+4BkZ6EUul0sikW7durV582YNDQ0TE5OIiIj79++3tbU1NDQkJCTY29srKCh4eHjcuXOno6MDxL8MaALxw6RakEqlYmzEoIho8QuMAXr44sWLmzZt0tXV9fT0hBbFZDI5JycnKChIWVlZT08vKCgIOr2i7RUQlegyhLI0k5zwhwTWPPwtxiY4iQfj3uA0s1isgoKCffv2rVq1av78+Q4ODmfPni0pKamurr5586aNjY2mpqazs/O5c+cgJSciEEQ8YpTBZOwIkYhosoYSI6BIoZ9xWFiYqanp6tWrd+3aVV1d3dfX9/z586tXr27evHn58uVmZmZnz56tq6sDbBXKKvJGNq15XGgCcQLqd4usSZSYZLPZaJQyCu11d3dfuXJFVVX166+/VlBQcHNzi4+PB5h0QEDAihUrli1btmPHjpKSEhjUgJtbKMw/3vc9/iTC2g0CKJDJZDY1NSUnJ+/evVtBQcHQ0BB6WTMYjIKCAj8/v5UrVy5dunTLli2AJpJIJBwOh06niwiYyagm+0aJJgonoCQUbtNLsGIUCQb1QdkoLpdLp9PPnz+vpaX1+eefz5w5093dPTs7u6ys7OLFi2ZmZjNnzlRXV0fVnug3J2wsb+xJQiTC+UR/4sLCwtDQUC0trRkzZgQGBhYXF1MolJaWlkuXLpmZmSkpKTk4OCQlJZHJZDjxEITAcVO8EU+4G3uaKJwgHTIiWzqkAE3GykTag0qlpqamurm5LVq06Pvvv9fQ0AgJCbl69WpCQsKuXbvmzp0rJydnZ2cXGxsL+HjED0hLDAW0oqwcor8E27zQEJfxU5GPJCYg4hKiWUtubm5wcLCBgYG6urqbm9uVK1eePHmSl5d36tSpjRs3qqurr1+//uzZs2VlZaioED0FPHk/MT2B4WkCccJIiEajlZSUnDlzxsnJadmyZUuXLjUwMHB3dw8PDz9x4sTGjRtVVVU1NDQcHBxOnDhRVFREpVIRcBIRn5iJhqKKyJTCfXf4GIIoj9dTlxC5YQEx5Q0NMkWrFWPwVVzNomgE3AKLxSorKzt+/LiZmZmamtratWvDwsJu3bqVlZV19OhRFxcXmBy+b9++7Ozs9vZ2KEP9y3kCw9NfnhOQQBIIBBQK5fHjx0ePHl27di2kHczNzQ8cOLBnzx5XV1c9Pb2lS5cqKSlt3LgxJiYmMzOzsbGRyWTiACF0vlEODtcbyHtBkVmcE5B0HCXGQD+Oa0gExILgD/J9hQQBJ+AIP8QeXC6XRqOVlZVdunTJy8tLXV1dXV3d1dX15MmT169fj46O9vT0XLNmzZo1a7Zt23bhwoWGhgaU+J+YKLqR0N+BExCgH04znU4vKSmJioqysbGRk5ObPXu2iYnJrl27fH19zc3Nf/vtt+nTpysoKFhaWoaHh2dkZFRVVUF5ADolEFDHcTh4DSeQCEPjoZUgATwad/pHFxUPrlsQYwBvtC0QgEalBRwOp7Oz8/Hjx4mJib6+vnp6eioqKvr6+oGBgbGxsdHR0Tt37jQ1NdXU1Ny2bVtcXNyzZ8+gywa6unjE0xwnGv0dOAHCShKiN5GYGGhZVlZ2+vTpNWvW/PDDD1999ZWysrK9vb2Tk5OWltaPP/74n//8Z/r06erq6rt3705PT6+vr+/t7UVxDwnWK1s6eAgnQpUNpTHgBNzdxwk/+kg7IScHaTMul0smk4uKis6ePevg4LB48eLFixeDOXTlypWQkBATExM5OTlVVVVvb+/k5OTGxkY0/U1CAGnhD0Bh/G3o78AJ4PABuIjJZKImmwKBoK+vr6KiIi4uztbW9tdff502bdr06dOXLl0qJyf3xRdffPTRR59++un06dMXLlxoYWFx6NChnJwcqBeVMbhljh06ZCgAj7sTo2cdyVwdLwkCAwnZSPiHoRNCT0/P8+fPExMTPT09V65cuXjxYnNz8507d+7fv3/Pnj02NjbLly9XUVGxsrLat29fWlpaW1sbuFI8YgwcQrmjbM9o3OZ40d+BE/r6+uh0Ojw2ITHoF+DZYrEYYDNPnz69ePHi1q1bVVVVZ82a9d///nfq1KnvvPPOlClT3n333X/961+fffbZrFmzVq1atW3btujo6PT09La2NvhZ0eA6Adz7RAaJCKvpGVU/AbfNZFYixIr1JEQ4qLu7u7q6Oikpyd/f38TERFFRcenSperq6mvWrLG1tbW2ttbQ0ID5Pb6+vpcvXy4uLm5ra+vr60OjgxDLAfoaDScfpdscL/o7cAKETSCeA56cTIUxxMu7u7ufPXt269atiIiIdevWzZs374svvvjwww/fe++9t95666233nrnnXc+/vjj77//fvHixVpaWps2bdqzZ8/p06fv3r1bUVHR1dUFNVnIh5bRA+NiHSHlAP8VCARMJpNEIpWVlaWmph47dmz79u02NjY6OjrKysoKCgpLly5dvHjxwoUL5eTkVqxYoampaWNjExgYeO7cuYKCgu7ubh42oAQEPwpMCYk+BgKiwcxo3OZ40d+BE5ChAp1I8CwyBMvh4cEJ5vF4vb29Dx8+PHLkyNatW42MjBYsWPDpp5++9957b7/99j/+8Y+33nrrH//4xzvvvPPBBx988803S5YsMTU19fLyOnbsWGJi4v3790tLS+vr6ykUChQG4SXUY6MTEA9A7V5fXx+FQqmoqCgsLMzMzLxy5crhw4c9PDwMDQ3nz5//+eefT5069fPPP//222/nzZsnLy+/dOnS33//XUVFxcHBITg4ODU1taWlhUwmI8QE4meEvABOEBFAa+GYNJgZY/o7cAKCryIBKfyD3hYirCplYGCgra0tMzNz//794Cb+/PPPX3755UcfffT++++/8847oCjefvvtf/3rX9OmTZsxY4aSkpKxsbGjo2NwcHBycvLdu3dzc3NLS0tra2vb29t7enrodDqLxQLsGh61xE+wjL8hE4SVDI4FiYnMBlQOwCAfMpnc0dHR2NhYVlaWm5t7586dGzdubNu2zdLSctWqVYsXL/7uu+8++eST999/f8qUKe+8887UqVO/++67r7/++qefflq6dKmxsfH27dsvXrxYXl6OmhPD/iBolnTwVCEpAZJHptHYPuSxoL88J4yQhEIhg8FobGzMysqKiopycXFRVVX94YcfwGqaMmUKUhRvvfXWlClT4JUPPvjg119/XbRokbKysoGBgaOjY0BAQHR0dHJyck5OTmlpaXV1dWNjY1dXF41Go9PpdDod6iVQ4B+MN/Bxkb0BJ6+/v59Op4PzQ6fTAenw/PnzioqKoqKipKSkqKiokJAQMHtUVVVnz579zTffvP/++/8gCNTalClTPvjggy+//PLHH3+cO3eugYHBnj17bt68WVVVhYZYj55//5ejN50TJEQlJ/TubWhoePDgQVxc3MGDBy0sLFRVVefNm/fll1++//77bxH09ttvv/vuu+++++577733z3/+89///vfHH388bdq0//73v9OnT//hhx9+//136IZrbm6+ceNGV1dXd3f3HTt2BAQEhIaGXrhw4dq1a8nJyampqWlpaXfv3k1PT09NTU1KSrp69WpsbGxkZOT+/fv9/Pw8PT2dnJysrKxWrVq1bNmyJUuWzJ8//4cffpg2bdq0adM+/fTTjz766J///Oe77747ZcqUf/zjH2+//fY777zz/vvvf/jhh99++62CgoKVlZW3t/eJEycePnxYVlbW0dEBmUSZdNt4P4QJQW80J4gGN3UEA4DFYvX09LS2tpaVleXl5SUnJ588edLX19fGxkZDQ2Pu3Llff/31Z5999p///AeiT0gGg3cBkagPP/zwk08+mTZt2ldfffXNN99Mnz7922+//eGHH3755Zc5c+bMnz9/0aJFS5YsUSRoyZIlixYtmj9//oIFC3799dcZM2Z8//3333zzzZdffjlt2rSPP/546tSp//73v//5z39OmTIFXe7tt99+7733Pvzww88///ynn36Sl5c3MTHx9PQ8duzYjRs34PQ3NDSQSCToz4cca5no03g/hwlBbzQn4FlbcLjBxMdDMSwWq6urq6am5tGjR0lJSSdPngwJCdmxYwc0r1dVVV2wYMGPP/745ZdffvLJJ1OnTgVFMXXq1H8RBL44sq/exuidd94BKf7++++DaJexx0AFIXP/008//fz/tXe/LgrDYRzH/wNZ2WSiYjAoA4NNg0EwaDDYDGIxCYJZsNltBrPFYjcIJrvgz20qQ51DxCAm747nwsPJ18MLVw4OP69gsgi+mc/X+SjLPp9P07RYLJZOp/P5fLlcrtVqrVar2+0OBgM+5uKV9+J4/fbo/Z/cU/hnXroEelyowdt87zvqxKGWm+GtdYfDwTTN0WjU7/c7nU6z2azX65VKpVgs5nK5TCaTSqWSySSfWkaj0XA4HAgEVFVVFEVRFI/Ho6qqLMuSJLlcLkmS3G631+v1+/183QgGg6FQSNO0SCTCx53xeDyRSGSz2UKhUCqVqtVqo9Fot9u9Xm84HI7H49Vqxd8A3IR9eN/e/TeBOI7jmsBQwvOp8eNxQdjT59w/Zty+9nhfr9fL5XI+n4/Ho+M4tm3vdjvLstbrtWEYuq4vl0t+nM/ns9lsMplMp9PFYqHrumEYpmluNhvLsrbb7X6/t23bcRz+47bT6cTLd3ngFn+JSj/c8iSW/KvX/ppevQQAhhIAiFACAEMJAEQoAYChBAAilADAUAIAEUoAYCgBgAglADCUAECEEgAYSgAgQgkADCUAEKEEAIYSAIhQAgBDCQBEKAGAoQQAIpQAwD4B9VidXyh/A70AAAAASUVORK5CYII=" width="400" height="261"/>

  三、巩固反馈

  1.量一量自己手中的长方体的长、宽、高,说出每个面的长和宽是多少?

  2.根据图中数据口答。

  

\

  (1)长方体的长是( )厘米,宽( )厘米,高( )厘米, 12条棱长的和是( )厘米。

  (2)这幅图中的几何体是( )体,12条棱长的和是( )分米。

  

\

  (3)如图一个长方体,它的长、宽、高分别是9厘米,3厘米和2.5厘米.它上面的面长是( )厘米,宽( )厘米,左边的面长( )厘米,宽( )厘米,相交于一个顶点的三条棱长和是( )厘米。

  以上是《2019年北京版五年级下册数学教案:<长方体和正方体的认识>》的内容,更多北京版五年级下册小学教学教案请关注新东方在线小学网


英语+新概念学习资料大礼包

微信扫一扫 自动获取网盘链接

更多资料
更多>>
更多内容

小学英语资料大礼包合集

扫描下方二维码自动领取

更多>>
更多英语课程>>
更多>>
更多资料