2019年北师大版六年级下册数学教案:《图形的放大与缩小》

2019-09-28 16:23:29来源:网络


  3、如果有图的三角形表示“巨人”用的三角尺,你能将这个三角形按1:4缩小,画出我们用的三角尺吗?

  

\ACT8gcWChtpRw9105PIKUQ3/DeDg8sqpRnzl+nJxHQg/ehATNIvQ/RDfLbaNb0VgKMbqqUI+e6WUnS3A8hOhHun5tffW5JckTQiCPxGdq5HEvmw4isUhkTbFmz+GkLC69eY/KNNgZfvUz1XkZ/ajha38pykpCmiuidDtXO/R8GTwXBFfiQ7PRuknK8rpVbiQ4i3ZusthFP9eG6dlYDgNRnjpTgnAzv6n0hnV8QisOxpFKeOddOX5h9Y2fPiu0RzlkvfTp3OPZv8+WvPUP1tuSZNz6k2Iwm5fDcmsM06I0Ts/A4suzMoo/K1CzJGQGyH91YoeLl0L6HznezpdLQhffetx6tEo9TlDA47lCUDDHjYbirNIfq2mqgSARMofMuLUOxwEoU3oqTr1QWOMdNpURRgsEofttd54plDywozYELrQHrpcW8iMNbj0YjCanFAkOhM2zguak0R863sBIavwZh0bF7UmsOOSf11yg0FV8l9QlVvYHzgS/F65Aa2uHWH3Duf/y3zDx1GlbFQbqBpM9++dol1tV9sFtE6KwMIuTyMkjWdRXl5WBFaQ6dv0JvonJ/3+PkZBGLW4/SHDrfyErIreKtvInAWFzoSvKmNnaXQKG0oBKeqW8KilKra4bGovKWzkK7exP8VwaSwS2+/N6TVMc3c6drheD/8DZXdxOGNYHBSG637aAo61jx34URxYdaSBrtSgHN7oCEEpIF+eCFFjYDAuJRsnlY+b+4ovAQRRGXgPgj0gCui8EghkrA5lRE88uaI/VXuamUYL18bUTN3Yq+9l0sy4yiOXihkR6lkHGkjCMNilJBs0FGBRfnfAfeWzYw9CrNkfMNrAbMlQnvZ0IyIp97tQRwKYbiCHQUFixDldRsyXRty3i1JfEhFZh8+W8Y/o3n8P0G1lKcEoRwv9a8cukSS9v3kJjKLI6j1GCYEtEXc97jKuCDoly4SK9SO2TzbXJyRDCm4vD5y6wkKmiYtIXLMfHSVikpLvwf5/BUWFQlDtVfpS9Jwu9ijauIl0aSC5kwWHlTFSUIivLV956QPPNBUapYLCHZUPDGOcqIgTlD0GSKEi4oSoqJ6XDDks8FY7Zms6AoGVCihKNXaQ5faGRL5a7sh8rmYeXY3/f62bOi3FOaw2fb6C0oikSfRQSrOARdQJp6WxZFKWmOnbtCr1IhwnHn89h9btffl4Mw+lSMIN+WBrY++LQfYGOEfhh+vc/YwtCnNMfOX+OuqoR3C5vTPIo9up9lRrFhRkkDxjgjOE+9BpNAWoFUYadTbrx0ka//2+/jPxoRE04JfNmxBQzolJcvNrO8XREkifdhJJTxWHa3GZ4KmpKMq66UK8rBi6Io+5GTwOwVR+svy2bee7BlTN7Ja0EeJseDZKF9yyyrEofrL9OfxDzBPthGqkFWEmXuYsCIkbDdqCinvvfnuaJYQBJOJOAiD7908Ij+Fl6vhAqOSeABKS4szrGxf2ksJTI2a1sBUqBEJbTv0QuNlFQhl9tDZPPQ8n8tRVlXmiNnW3OYvSwWbVjyBFORl0WrIYVMoBDlLc2zdU3cylPT+X0cwhR55HyreIwJYcRONpNi9api46o7h154Sjj6lOb4udaQmi5Ov7KAEE+4q+FBfIz9cFgv61jrLUplsrGsBq//qmH781m6njnH+I8uoNZBV6CSWqrWsIksvY5cusaiUrLIikOZi4t1D1bqkZII6M9osDIwPHPhGr0RULlHWYmipByva66hh7MsyCZs3Jy0lY1jq/OyWUCzqhIO1zXVMHXB6ufzQTBuEBx4I7m4o9Wrf4tTv/40yehmAKsKqZ93VjZzcQ+IWDItIuMIipwGNrGyvHWFfucd4nZM8BEU6Rx4TRVPn0o5dr6VUvKr8HrtT1MerygBsHO3WuVYXTO9AQXsQ2fShM2dE4uICZ5nQp760rbm8Nmm3AhQ3FDZcLjCd7HsEZj9gbpWekMDem+xgfgi9ZYEHUQfzJBhk7kJ3FApB850sZRIWG3kq87xjNHaZcErW8MXpQ4qGp9BRTlUhtxwuMKdoxcpnZsjsgCWEcaQdQxbGDaAFqX48/PnmU6q+TLTO3Cx84Wluw1Wr0zMi+BgSWmePtfIzUSHEf3xcrL4sEdJOXS2idVqAEUaj5FuKbCNYGwKkpTNvJWNxqLSHDwX5Sz9VQxWggZ3mGDSzldGUkgh6Q2b+bHaZr5Su3XAQvrQ6YPqhr5aRnxe6/h8SR30FOcl6kmhcMFCKVAsWTz3qJSDda1sh838o2TzsLIrKIpzjm9jYNmpKK6oKJUCAZ4g39aSKi9cass5hIt8JtJNxYwsW68K3gveqFTRHDp3jRvJ/gO3PDCvNU/XN3MzUVhXwaMxXqLmFJpKvpkXhnaJ8xanVIdKefJcF3NJiqYWvZpFRYmrRuuhoiG1QoZQTWCrhDeWLCxBkp77tP/rv+bz/+YP0XPC6iLmhAyFjyt+NryjO1H8+ZkLzClRFGPFmmaCvGQQsGRoBGRSibViWWkOBHnFvvg4OZmgrDeV5kD9NZYTBdrhfRoAIxqxRUpbKUJMCQ5jLKktM5dUeOLri9yoJlgfMeOEZWgFS4J4Oiypt5gsmLkzSG5tc+o3D5KMSzxKGgYQE0aIGIiVUSVFownWOJdy3xlGgLvekthtnPNYIyZsQbIrEsq4sEcx3mJsiQ0kMO+vzjVxrxQC5B4hm0eV08yQZdkOcolfWVGs0Thf4Z5Oea2phz4V/SgOZy02j790YDOcU2hfkcCexFIppbx2tYMhFeNRMnBp4Tvdda5Q9oa7acorDb0MJRqTlcDpMNyBdZqMMs5pGWqCJLx13CfjVpryStN1VrXCek/mnTjfvAIrlD4YCXtNbIZ2RpaMJg5dDhQsfnmdrcvzNB34nL6jp7D30+CkTHBOC3jQgrNiEhhQmhcutbOaJJB6TBJCbq0NIbCy7HBOk/httC8j4EF4kKS8eqWDYaXD8jB9jJzkqOIZUnLt/USDcniTon0F5wIgMsTJWid1wXhMYkhdmRVV5YVL7fQnCms03oZ3chrnKiIv67DeCVqjqjEVCwr0QIlr//R5YWHRRJIckWF0FFqHc9WCvDxWJWzbjClg01vSbBuvLKbipf8FGRlfyUGRWIfRW2xjGdQZrzbc5MFmSUbIh/Whb8hOys6mlEulb2C7Hg+K/BaHo/OaFZ1y/NpN2rRmPaqvCaaEfBnrRDi+BpdONjN+3NjHoE4lHsUmYCuF78quc4Wyz1jdznj96oCkz3ZhX5ESDPUyPoqz0deg305sV7dSzQ+vtbJWekAeV+Gr4DfBb4AVbq8Uz3bYtobVBMEKycp7ndT/rT8hvVHohMAuAAAgAElEQVSu2RTjbGSsPLuwjEsdjOiMtxpvcS/RklIrkivslpe1WB8w+1qU8kEp453GPolw9Aps9TFyqoKtovAMabn2wXYanhmmWGulbSLk3VGL+1Aemynuac1bjbcYjk6i6Ch0VjqXMXGPj888rmRy/53q3qb+OwdRt7Zk2jZh2ZW6GrlE6kP7FeSlLIkVuMs2DqOrUDHk03PmpY19kGMkl8hSMuCWMrx5rZ9qWcvK52F96BuyC2WnyNKENE3RuuZ4fDwo8hGK4rwn8ymLSvPMpes0G9mw7vWjleftrmk6nfuV8szPJZ4XWifoKMQJFN/DPOK6KtDhDK+09LGU1J7sqe2TQNqrSDoep2c0LH8yQPvfO8rcM3Uwv7fNXwUYspZnGwZY/BZPb/zs/sWy8rzVPU23sw/9/bc9t9s53uqeYjn59rru/mvqDYvW8WzDIMOPeW6+DS78LOst89V3j2MnanLea+23EUW5DyQ2e+hvdtwrVN4A7dbyctsEar9OkcJHa02lXMYY85+H9cq8RwVF+cHX7Xw4dY+Lg1NcHJrmzMgdTt2ep254nvrheeqH5zgzMstXw9OcH5ih5fYqX/et8nunB3huZovPxtY4O7y4p6NueJFzI0ucGLvLv740wwtT23zVc5szg1NcmrjHhYFVTt+e5cvRaU7fnuXs8Dznh5e4PL7B1wMLnBiZ54WpCv/2/AS/GFnj/PAqXw+vcGpkka9uz/PL0Tv88vYiX9xe4qvxFa4NLlDfN8eXw4sMD2yzcOEeH//tl/nof3ienrPLXG9fpGVggbqhOc4Oz1M3vMDZkTlO357j9Mg8p4eXODO8xOejS7w0vsm/rL/Ne6ML1PXPcaZ3lvqhO9+Q19cjs/zN4ARfDk9xfmCGS8P3+HhwnX9+epAXprc4c3uZuqG9yeuzsTWen9nmd08P8PHgOk2jq9QPznByeJozI7PUDc9xYWg+5z0+O3KHuqE7nLs1x9U79/hgfIl/WX+bl8Ye8HX/NHVDi5weXuL07TnO3J7l7Ii895eDs5wdvcPlkXnqB2Zp7Vlgom6Zt//RW9xsmKd1YIXTQ/P8cniW+tt3aBhf4sLwAnXD85y5PVuQ1yJn+yb57PYib85s8cnMKlfm7+byqhua5+zwPKdvz/HV6Az1g8tcGljj0thdTvaM8NnQHC/MlPn9C1P8Td8c5/bYr+JxcWCG60PjWOdyeH2MS3nY57Ho4QiBmleaf//LJt4ZXObztn4+bx/kw87bvN89xsedY/y8Y4yfdw7zYdcQP+3s40TLLU53z/FR6wz/+/sXODC0zjs35/moY5ITezw+6Zzihzfn+c4vuzgwsM6Pr3byQWsfJwcW+axjjve7h/jpjV4+6B7iRMcYn3ZOc7J/jffbxnmta4yDA1v8409v8tPuOT5pn+PDjlne75rk3e7b/OTGGO9en+S97im+7J3j07YxPmsZ47Pz0/z0+59y7v86ybWjDVx9u5P6S+OcbRjnVMsYJ9oHOdE5zscdE5zoHOSD7mE+6Brjg84pPuyc4ifXp3iyd43vfN7Emzcn+Kh5hPeuDfNJ+9g35PVh5yA/arvBu529nGjp54vuRd7pWuR/++AiB4fucaJ7ho/bHy+njzomeefmPM8M3efvf3CRt7uWON09x4nWW/y0o48Pu4b4uHOYTzvG+bhzjPe6x/mo6zYft4/xQeMIJ2/P8cPeSf7Pz5t4smeF95oHONE+yQedU3zQPcyH3f2c6Bzk445x3u8c4qPuYT7tHOFEyzCnmyboPz3H8X94iGtfT3CmfYb32sd5p3OYj7uH+bJngk87J/i4Y5wPuweCvMb5sGOS9xt7ead7kiOD6/xk8A5f3Z7mw+YRfnZ1mI/bxznROcYH3UP87Hofn7RP84v2eb66tcC7V9v5YfttDgxv8J1ftPN24zCf7KNfneiY5BdtQ7T3DWMKK5VHkd/tSVHiUmRepTx54SZdRnhu40Vuxw1k8e4i6weQWMOxK1e4ZQSgsN/PsjMcuNrILRsX2BGpBBJkFi1GO+ffCtBvM45f7OCB3blAi1iufKIPy3F0ytr7zXzxv/4nBt+/uqsmDhvCnGqLl1in2icFBmzKgcuXWLbJN+6xU15pgIjU5HXPZRy5coUB8+jR7WGfKtBvUo5cucK9fAkT26IY10tYdrodVy/bKgcuX2bA7gQKhnhhaimb8g1Gfo9scpsvfus/Yec38quyHWbF+FG7/l/0ozi+mXlHfC9mR8+RcxrosymHrjZS8fuT1a/y2ZOiODwLKuXJ8920qZR7SLeJdD01GkKFDbGCBIhDpaQ4XvTM56pngkm5VuYbZQkFPnShgVsq8rOX5XnGk1IhZROb7/JseA/HNpY+pXn2XCPrMf48LK4dFYzbxrlUELSlFCrgetY5+b/8MWPv1Of524V4MiNBo6jiKSMB+2I2t4FTLJp8Ezy3lOZw/RUWVTCIW+k0PtD1RHlZKmjKpFTE829hTWmO1V/hllLBk/R4OfngV+hTmiP1V7ibKLGRG4nd9DuoJWNcY1AgKx7zZbXF4fDcSINicOGNIie/4L589Mx7DcaTDG5y8ns/IBlfR7BjKSqGELuQmYsUiXsUeYmjWlHGMoHnPgrLFsGcSc0zXwnIBV/bPFKmGjzzRy40sK3KoZc+XDYPK8uxd6fj461e4Y9LKuXp+k46kpT18PNoISqihyPqKzr+ylspR8520KOEpE0s5C7/Lpb9N8qwoFKeqe+mNziVIoGKNzXVNIU6+OAI3kBAgkfqW4U5MV4H4vJyac2ormDqpWtM/OAsA0fqxQkTUB4uIFxLFKxhwXIc/GkR2Y8LitWnUg7WdbIQU9OFCS+3qIW6FsfqOPiuJpojdR30BfQwe5CTQ9JLCHq4g5VIP5vWmH/iM4vo4WiB83gWQ537kpqc8/eihj7OfVzxxqmgh7/69UMko5KaTrBeIo/8AlfryvG+2Bp6eJ0wC0UdCXUVf44QxhOIK6KjskelHKovoocfLpuHlfeLH348SXfAYq8qxTPnWrmuNJvUKmygll/PRmF4fOqEaWQj5fjZNm4lQoPpvc2PnJG98F0sQ+D1qrtOfxKa19WEZoLn1uFrnrkQOrEVBHmkvk3Qw7ZQT6UksD0Bd98x8lELnb/zBgM/+IXgtjaQmIgwUaXBSx1QGDt4p6LII4In0ugcOdsuORx98ffUUAFBVhpB0qLF7H0vSTlW1xZ4zApu/G+TkxdK1X6VcuxsG3cjf7B2GC/pG6KXzYfOnq+igvavhDoPJDVqJ+cKy7RwDxcVIK6ilKR9OPWdQ0JXFPwoGrEE15y6xa5MQEZJXoGpIHIfsGMFDSUiln1YtHgjFysCr1ddN6XI0/wI2Tys7AtL0f0pSrjmkRCWwBRZw3pJz7F4apQ+8pYWBZnAKMqbmufqrtUI8AoVfuyB8HodrW+VBkTLdB/q5nyKsNeGoSb6J9IahOXg+U4WEo3KsXkeNgOL9yZUGpd49+/8EWnjSmEW8Zg0xWQWG7FKcbYKkAx5/zR4vGsjbkokwGtgNS75stC7vAtKHQ7SGtYr1ZBJhOOz5yTCcbeifNtRRQjwnq27JoR/Fkg1NqaqCMFYeIFx5ERwgYVlVSUcrWsINEku1w0BIYalm/PEmKCYlhstnvnTvxYI8NLabCR9KI6mDkFpF+RlTYEAz+F9VZZdedCLgP0t1ZqfzMqSTQK3Uo6fK2C99tW3flVFeRSExQlKeD0wRfbtgNlr0hzkIcOLy2H2AnQplzXH6i/To1QEUe/5AME+HbzQFDhxq+GwwSKXoNjGkOCoLTd8Jnb5TpXy1MWbzCQpSQZpZIOvQHn4LiMftlL/R2/T9dJpsvWMzEg7SOqahAcotgNIB/IYuuC7yYAKwt+S5SteWXppDp6/wpIKaZ2df6i8HBUSSmjK4ghzcFdpjp6/TF+i4iS/J1nJ0ktz+HxAD+Pxthxg9oHiH4H7p0Q+Y4PA7MuSSOj8FfqSuEeJq/kqjpLszTAYLAYr6IWwtBKY/V/ugNkn8Q4uSibC7KO8PPgkh9k/IEXMRCY0vuxrJGwjcA/beL5EBUuP0hy+2MCWquZdeL/9a6+fPSvKfaU4WtdAX5wZckLuNIw6snmzlFCU8G4bsJSrisP1F7kRFMXu4wC4m0j67V4lnSzmV5dJJWKBDAmBqjOMciWgW6X8xcVuplUqqJdtJBJ0E+r+7x9y/H/6d/ziL36KD8aamMpDCHEMG5hANu3y/UVwPIeRsYShFIKjpM4VPL1K8VfnL4XNfJiKSL8hL0uJMtskbIPbBi+b+UPnL9KjVFza70lWm0g8yqHzFyUeBYdz2yhKSBiCKIsLG23ZlGsE3bDFgtrk4PlL9KmYVyIyt5WxbGEpIVi+QPBt9A5F+eJ7T+SBW4L1EpCjGD5kAZWxXZCXB8pskzEG3EeR8kCk7DwEC6OhhGKTSNItRohNSqT0KM3Bi1fZDGTo++lbsX/t9bMHRTGAYl0pjtQVl16CE06J6z8DXuNIwtKtCs5RLqk8HiXaJvZ6gGernPLS1930JylCIRBJHwjp09IYSoTFYVyGyUwgW0g5fLGF+URj4zB337LdMM6l//gR1176SjQqWAOKyFNTOHYjngWVb/EkWBIZZ8PEIUsCxaH6qywp4f2X5YKgcLOCvBwJCRVSqmIltGFGCdYnsaTtTVYlYjxKtHoJCUNKFUciHdYbvJfUdg6D9zKFeiohHuUq/SrEo0RyDRJcmJWE7EH++czkG+9kYIuT332S6tgmGGmbhECta40s2bzBBnClyMuDV1SwIR4lw/pt6UfWh7oadqSmM0idfZlqsGoeOd/EVhJnlP2EAudm0H0qyiP3KLJMWAtpH3piIqEwf1koWHxloSAUmFY28w80L5xpZjBSqj6EgfGRB47tsuaVr1sZSoIp2mtZr2aEfVCJWiomQ0KVMgl3EfKBN883sB5jOxQ8+LyLq7/9BMwE30oe47CPeuWmn8IkHjbLBhhRmuNnWvI8JcXNKUV54cJ8ZUGJJeBBVfP82WaGkkg+vrc6CfewXPugqnMslRUKFGLYQ1i11owfgaT7bqjzcKJqf8t/GHbj0R3lgsjD9iXp2+bMdw6SDMtm3oe9WjS61DbzBSGE/aIG5ojcw7oGfsx/KjEpaF8zIFgJFxxUKc/VddS4h/fVt4oN8vjPPqxeWqxeiVi9oqKYYsMb2ciFWKDc6vXsmc7aZn6HHftxh2c90Tx/tpX+RPgacUoAfqkPihL9GvJwg6NsJCS3T2leONPEelWxdHGUmTfbuPG7z3P1j15DL1Rr+hVZFvZ6FMzwPlweiRRiAx4907nDTJtbcQqPKppgo5tjvSocwGK8cHuuk2zm5dp7uaJIW+x+PUPh1sG+v5oIj+9grHOwkOVjrq/V2Vu+oSinv3OUZHh7h9XLF61epnabXF5ieAwOR4SfIRpkgrxi1YtBmVgp9quU43U3KFWjE3M/fes/ZzP/EEWRKDfHstI8Vd9JuxL0sNDWSF5agTiLpjokZ61EODoqW5pjhQRE+1tFSm7B4+daBP5NQH9qE2YUBbYUFEVsl1nqUAq2nLB0vHypm/tjdzn9D56l/V//lOkfXRT2swwyA8q5sAPZR72cC+avFIekVrDBChhpdA7XNQsY0ztRbGe+IS/ZL4SZMs0gExaWo+eaQ56SvcsrZtw6UhczbnlIpS1ctHCE0AVDGFWdhUx687KqcLiuWczSIahHIj1Dzw2WM+FmTiENaO40Rjg+RTL6QPbi3qAJWYFjyEKwiO6QlxW2gwlk6SURjjZHDcf+lKFz03+UexKWXkfr2yklMZH3fncp/6UUxdZ0L0JYuq0tQFiiRaPgxMhJnaWhU2M4fvEiAzZjNzhiL581Zzh+voVRG0eCrPCCcciqTaEmFDXCnvjWL64w99Nmpt9vhF2Ikk3EOrbfjZ184vojjvy1Gg3bjIMXL7DmKrt+H6f7WFaI57smrwfOcPTSRYbs/mAZGhi0GUcuXeRBDmFR4d5FGEscFGLbeaDCmi1z8OIFhuzO96mZMEKyxxxGFCnnIZvY5qt//B+xdx7k72rzvpDm52o4+Xh/wSnMIRm6yImwoDaXCGN07WOBKhkw6AyHL18hcYr/2p89KUqGY16l/IeTbXwyuUbD2B3aJ+7QNDXPtelFWqaWaJtcoHXqDk3TszTNzdE2OUPv9AqXh+7w+6eu8uOZdepn7tE8ubbno2Vyla/GVvl3p3v58ehdmicW6JtcpHdilfaJu7RNL9Mys8yVmVWuzN6jaWyFrsl7tA0uMTm1Tse1MQ79izf49A/epm9ohWvjyzROj9M5NU7nxBwXJqe5ODVPw+TKvurVOrlC69QizdPTNE7P0ji9ROPUCk2Ty5yfXOTH0+v8qzONfDE+R8vYPO2TK7ROLgV5LdEa5NU4PcP5yXEa5+ZonZimfWyZs+Nr/P6pa/xk5h5NUyKDvdSpfuYeP55Z5/dPXeXMxBp906u0TczQODdH0/QsrVNztE0u0jq1xLXpRZqm5mmdXKR9apn2O3N8MTHHv/q6kZ9M36VteoHmyWUap1ZonJ6laXqS5ulpWqcWaZye49rkNG2TM3TPLNN3e5Gpq3P88NefZLhllr7xZRqnlrg8u0DjxBSdU3O0TS7ROrVI0/RULq+mqRXapuY5N7nIB/ObnJlbpuXODC1j87QFeTVPiYyuzEzQOrlCx8QqbdNLtE1OcnFuhTcnVvl+XQcXRuWa/bRhx/giE3cW80CtbyO/25OipN5R9SkLOuVPTrbxbOckP7nUxdtXu3m56SYvNPfwamMfbzT28HrjTV5uucFrXbd47doNfto8xPOXBvmNi5P8Qc8iB9smeKVhhFcabhe+b+86J+VXQ/mp5ml+79o6v980x4tXb/Lja328fW2YF6+O8kLzAMdb+3mmbZhj7eO8dGmInzaN8+GFPp7+g5/xxH93jB/93bc598oVXr82wOG2W7za3Mo7jU28e7WLnzR08aPG67zWOPjQOjyqjq82DvBqYx+vNF/npeYbvNjcx0tNQ7zcMMDTjb382+uL/KOGO/x5ax8vXrrOGw0DvN54K8irL5fXi83dHGpo5dXOPl69ep2XLw1wsHWO712e5t/cXOClxlFevfbtcorfh1on+IOeRb53eYqDbXO82zLMa9ekLV5uucHrjTd4o1Ha6oXmHl5pusnrjb38sGmQt7r6+Yv2W/xmwxz/7sYirzf38WrjAC82DfJS8w1eau7mlebrvNrYy4vNN3juWgdvNNzkndZB3qvvpeOzEY78ox9y9qsh3r3cz4tNt3iurY8XrnbwVtNN3mjs49XGXl7aIa9B3mzq5anGHv7wxjx/2TnAG123ePnydd5oGOL1xlu80tTDi83Xeb61i9evDfPmtRFeb77Fq9c6OdY5yD9vm+afNC/zfONgaMO9tJ/0rXcu93Ku9SaZkZk1xqH8yuhhbTzKpcwnisMNt2i1lvsIROQuQp58HyHkfhDOLSLbgG2E0PnI8BZ1Xjyw63s87ofvfg/P9q9zLZzbwHMfctLtWQQCsYjAICrAxlKFE3/4Cz79N1/x1YEGXFnqOYUQP8f6b4VrHuyjXrFusX5rheMu8o5XPTzdf58eX7v3/YfI6x41Eu718Pd+D4eGtzjv5f/391inGeBcuLYfWVbG+98Nv9kI91sJf1svPLfHw1O37nPN1epbfK/42+Xw/9jeCtBTms/+4EO2F4TkMBJmF38X3794zwehTdqBwSCb3W0RCb7vh/qvh9/cAc4BB4c2ubPPNryP9M2SIQRsyeL72/iH92D1Ao9hvppw6GIHXQHrlS9341Iyhx14rDOyIUs81U3Ns19dZShRskfxKURYRUxws+NcoYxhK1G8/NVlppIq+LvhKKO9QbMJvgS6CiWLH95i9kw/jX/6C7gB6Sa89VkzWyWBdDgD1nqcNWIm9XLk9C0Pq8PD6hi3S3kWLvL9oQdGEs3BL65wr6rkfLTW7JaXF7oH67L8nptVzfGT1xiphou8foycBNajgeFEc/zkVTYqSkJns9AWkSIpWp+K20ppFNZDnUeqiWy+c2S+D8YHMXEa7WoW40DxpXu2ufC9o8I9HLZDJsokbmkMwUhQkJeWncw81OBNqa+loAvP92SRXzF8azJCCsBTrVS3E3mhPbVf7Tc206RpmivHo7Jtfaui5FlYcTgS7uqUl5p6uK5THuTmxmDvjMLILNhgD0wNbBjKDxTPnbzCUKJkW7cj1ruyq1zdWSZlUyl+WN/CeFLF2WVwa/j0AanVeLcJZgu/uY1bSuh94hPe/e//X07/3k8wsykbieXHX3azvpHK3nMbmXKqvrYXdQQNekQdHlbHNOKOAgo5dsJMbjeiNK+cbxd/RhL8AqkP8ip0Hhsh95nILoOtiubZU1cZrgYPef78R8lJjiwoyrOnrrBZSmDTSBuQyXMyU4iDD3VJvfgnSHkQ6jySKNC6xu3kUjHJ2wBFjtyk0a9RAd25zeXvHUKNbOWwMBMHE114f6cL8vJQ1WRe8q5UcWAVlE0txt44+b2v1mLmqwYq22QehlXGK+e7KG+UqcXMP679pOytwoaYn6goe5tRHulwNHhf5q5SPH+5g3aV8sCBcwbnQ45564j50p0XSw5ZCqWUyrbmtUsdDKjIB5bt/cCxpjJeu3iDfqXF/+w3MXobjcfpMuhApzlrOfF3f0Dzvz8Bs2KVnU40L51q4G5FCTeCAptm+FTl9n7rPc758ExTeL4pfJud5ywhLUGCpFqzYjEWnyH9OuWVq52sJUlI+urx1gZ5uVxezisyyiIvK7PKA5Xy6uUOhrQwBD+yDrvKCdRYWKpKYmyyFEuC8wrvUrBCNG6RuvjAxOKosKarvHK1S4gGAx2UoIcFv+d9Et7ZYZ3BqVT6RyLkEnXfPVBjs3fRkmvwSmZgbx2O6g55CQmI5IfZwmBdCZ+Imdxbiw+p6WxMTafAJpKeUAE9OuXFy52UKjKj7K39YlmiGa21edoHYI/kErmi7MR6eVdhXSU8f6GdHhXh8gbhqbJYZyWnhhe6TiHpNpA6KpWUF6920asDm72rHRGKsvuISyIDTKiMpy9cp10JzhYMaWbZzjzZVgZluN8+w+hbzdw8Xoefl1YSh5Ti4OnzrCQJVSRFs4AmyiFPiFj2jecbeU2/9XDgAgNMiibFygDoZcLq1SlHLrSwoKoBJSu/N0jaPBfkZdCUKUuQk5PpaE2lvHC1i14lpH17rdNWeO4L17pYVVoYUKwhknRL3kTx1EsMT1ibO4ehyoKqcPhiKz1KyMsjAV6KxlCRDu4sFk/mDFZnRNqopHebk999hmR0K3doJoAxGS7NhPrIWUzg9UqxZMFzuU0kwDNoV8YZl8vLeROQabX+mBkJgCsD3Trl6KWOPM/8vtrQIyjxkMPx2zi99jajOLG531eSrTYHRQbFMrAjGavY0MO0bgRmf/xsCwNKh9CHUMuwVA1hBjvCPOJS3gK3leaPLlzjWhERoKGSAPdh4dRtGv7Fy5z/w7ex92y+kikhAVTPnuuQvOvUluguOpvigzzsy1FVeNc8viKs+6Nn/vCZNpZjbEfB1ZOjQsL1KcLliPYhHkVz7GxLLR5lj3WqEuNRWoRSNSyPbHzJUL8Yj+JjPYSAi1WVcuRMW6BUlb9JdIEg3OREuM5T857nMPuDOczehVVZTM8RL48s+bm8TNEz78VBGfPMu9hEDkOGj/lRLOAED31LpRw910Ep1nlfzsa9w1dgv9zDZ9pqilKMR8nDDqXr2+hpDory7NkmBhJNig+bT5mfJRWAD+DvADgs7DQ9jlmV8GR9He0qoeqBLMvfdf7LXn7+D/8jE29+ISaRErKOtZ4SEq/wbF2rhALHKhN52tPYE4KyxN243VlmV9kHRfGiASFMTf7ro6Jojp5tCqzysbM8RF7EmPkgr6Aox+uaahCWR9VhVx0lfbbm+Nkm4RNzQBoJTE1tGvdBefINvrzHqlIcPRu4h0Nyklo8ShjG4kt6J0tK43NF+XpXPIpGsmYJ11u4GXqnvMzOmHnvk5qiFOJRJF4nKorsW5LQvsfOtVKqFlAMj2u/vPztM8ivrCgPY7P3hPTZCDwDNI4KGWUwVXAENvurAT0c16kJMbbPUQzRzESJonffZ2xUEl45VcdwksgolCi4l3K3/jaXf/c5bjz7PtniIt5nNXulE2B4r9Icq2/kbrIz7YOLzG2Y2oziC6NloZxPOLv+HqNTHAmSeltOy5JPc+jcFZaSct5+wl6/U16OCopSTV42hBXUX6UvUY+tQ/FcGQKk42oe+iwx8+Wadz6AASX1UkpE6kb08KFzVwN0RoKrZPYNPAFBXkKGqiFLpG9kET38BElAD1uQsAevZQMfphZJmxTl5RH0sM/Z7C0lYiQlXobQPB4lrsV9BpSp4EJaj0a2Q/vupf3y3+zz8yvlR4nof+GGtWEWsKERVLheRtNyWXO4voFupVhHQBvCFCzr3Xzocp5aCGEw5TlP6YHmzTNd3FYBrDeZ8OBnPfT91tssnhrBG6hmFmV8nhHCe88GLiQSamZF1ZZekk1eIaisQgqk0D6PS0TjcoHLHsWEUIO4woiBW8/UN7AQAopklq/JKy6pDJJsXFMVi4+DVaU5dL6BXrX/REK94dpaIiFpizx9X2irNNRFlpEeR8KiqvBMfWMI3JLwalnFKmzYhAvyS0K3vAlTh3l44JaE10WkrhBv2JAmRNBeMpOV8CFm3hB2v0FecoWg4cqF/Cgi5ZhI6NCF5v8fJBIyUExNd6iubUdqumiGLyqoCYrgjSxRStuaw/WtdAcwZc4uisyu+Xo9LhvzNAzilFjfSnn+/HUGdIZf0dx//SLXf/t5tn7WC+uyYqm4jEpqYtpHvJOV2A2VcqS+k+VCxi0xyNqimu5rZRu7uVwnCh+NvIawmVeaA/VtNXKJsLzbLS+J0BCDCJmtKUpglU167V4AACAASURBVI8i2UudhCNAro2K4mxtUCqOqnGp7wGMx2JYUCkH6ttCxi0f9+m5rEKCj5pLJAs9L4VkYJsvv3uAamEzXwnPiC/hw/tGeWWAd66QcUvCwqLyxXZJsWhSUZSMHM1eCu178ELXDkXZz7Gfz55zOK4WcjhuEX9bYBUJko/CzFlYNlOOnOniZiLxaxGe5+Izd++vQmNGjV9JU441XWfEGvpeP8W5v//HTD37BWzYAAV3bOh1Uq8o9thNArnE2esCd4c8JCN/vq/VOQZIxX+7g6aK54rX2XC/aK2LLCwHznSyuIuFZbe8HDWYYKz3WpJy+EwXfUn6rXXYXcc8h+OZDtZiDse0ZiDJheoLtoUwenhCeo0zncLxDHk+0yiruC3LB7jiZr5/my+/c4TqSGBhCXLYsZkvjOhRXljZVgp6GIwvdKpwjQxuPjIe5e8gaR8yDtbdZCvUeS/tVyvv77MHz7zD+ZRVJVmBb2Y76cge90mrjleu9NBv9n5dMGwBUNGe9+v6aW4a4cIfvkHDf/j/2juz5riOK8/Pw7zNh5iHeZmZmOjokd22ZVGiJFsWRUnjsKOju8Nuj5+6wxNjWwu1WNzEBVwkUqQki1RLQ9GiKFISxQ3EQgJF7CBQKOzgIpLYC1UoALWgtrvfm795yLy3ChBpFiR7PHIgIzKQuJX35smTeXI5+T8nX5c4hKWlUDYlAnLmGnJcdjcOkHFWypavHhzgquOwsyHCvO3cM/9yylKOy+7GXoade79bHkxg2HHZ1dBL2lnpeAkLjsvOhghXV1guLtjDRS48tR13tLC8Ge4ZTCT8Jr+yUnGAIddlV2gQw/0Kmw5QC2+Cg8bKr31YLiiu/IjtacwaJi/XdvDJzALh6ThDMwl64/OE4wsMxJIMzSwwGJunLz5HJD7HcHSOWzMpum/N89uLET6IZ2ibzTAYS9IfS9IXX6A3vkB4doHeRIr2qTjdM/M0j88QTizSOj3H8Pg8yUieD/53HZsefYvR02NEpxbpn07QHVugPzrPcDTBcGyWgfgsPTMp+iezDETnaYrN8UE8y/NNV2mOztMfS9MTS9MTTxKJzzEQn2VwJsngTIqBWIq+WIq+2Lz6W56eX5ZOMTiTYnAmyUB8lkh8jp54kp5Ymt5YivZ4imPxLL+qDxOKL9A7mWBoeoHBmQV64/P0xJMBv3rjCTpn4vTEEgxPzzE8maZxOsOvG3o5Gs/QG09JXt2BhlJa/t6WyPBBfJFfN/TSOJ3mZizNSFS2RV98jsHYPENR2VY9cUnL4MyCfDY3SyiR5Ff1PRyLLTIQTdA3k6InliYSn6M3Hgv41RNfoCeaYGg6wdXoPKO3U8w0zHHsx1WMdsW4PZkmEkvSFU/SH53nWmyB4WhS1T8e8CsSSzEwPUtLLMmppEZbOkvvbIzIeFzxK8lAbJ5IPEF4doah6RTDUxkGppMMTE3TNjPHkdkszzZfpX0sxmAsSV9soYL2kzwbmo5zY3wC13UD38Nfy6Wq3IaZzBoG/+uTenZeucY7Nc0cvNRBVVMP21oi7An18Voowp5QD1XN3bza1Mnui528fXmIbTWDfP9kN/8cnmRz61VeC/WxO9RHVVMvO5p62dYaYWfHIBsutLClMcxzpxo52HWT33fd4vBnPbz3yzM89/2DnH6jl5M1A/xbdSdv1baxr7GX/Y097LvcwfaWZra2tlLVNMCBtltUXQzzTKiLn4WneaR6hFdah9h1eZidl0fY2dTHzuYwu5u62RPqY09ogN2hAXaHhtgdGlR/y9ODy9JD7AkNsCfUx+6mbnY2h+U3L49QFRpkY8sAv+iOct/xNjZHrrGluoNdtRH2hCJUNfWwo7kv4NfOpi5evtTEq5c72VXfye76YV5uGuX+T3r45/AkVc3D7AnKH7wLjTL+rv0GPw9Pcv8nYX7XNMrbl0fYXd/Jq01XqGruZs/lbtVGfWxvkbTsCUXYc7GXfZ19bO27wX8/3sEvuqbYVt9BVeOA5FdzmKrmKwG/qpoivHqxgx01Heyu6+b92iE6P/qCF9ZWcfrkMIcvjbAj1M/W5j72hMLsC/XyemM/e0K9VDV3KX71szM0xPaaVl6+3Me/9sXZMTLK3o4Im861squ2l9dCfewJ9bCzuYvtLZ3sbRhhX8N1DrRfZfuFEC9cku27tnqE31V3qnaspP1kfPNiN3WdvYEXe19AnLvMqHcXFKUm8ITAFBpRw2BTqIdmyyGBRHSOIo2jxoBJJJL3topRJPLzuoDnrs/zqSu4jkR9jqk8XwDXVLyt3k8gka0ZYKJ3lB3/5SV2/MP76AV5ihuz5MZ1AYmCnQAGgX7kFD5a9uyEK/jNSIIuTzCOXAvfVGWNqXwTKr2SWP7ebfXNm+r/a8Bp1+NXgzO0ui7jihcTZfwaV/y6jTyVvqXyTAOdnuAZxa/bKm8lNA0Cn7qCZ67P0ekJZtU3/faYUGWOKxp8PkXV+62uy68GZzjtegEq2+fVaFm9fR5PI5HJeaB4S+Pwz39Pbq5IRuX16zmt2tyvv88vv84jQB3QrZ6NlfFrvCz/pPrOqPr9umrfX1+d46onf19JG8aAjC1P503TDATk3jNKsOFaJihKKThqFHmxroMOQ7pUVe6xyFKyZzQQFHHJ4kivKEI6dHv+QiPtCnUs3QHJy0gX8cgAC468b9zw5IeLNxdY6JygZcvndD//GYf21zJuSt9ZlmtJ6IXaWBaAORzmERKn50ra5oBWw+Q35xoZV8hl33NxARcNedilE9yHU3EsvedSwFXflL+lgU7D5Dc1jVzTCxLsKkr8yhHgBinisoi8wVgexcGoZvLMhRCtChtXKX0Lqr7PXGhkVDOVjwZBFoci0jmR79bMx4b6dGjYXNML/KamkU7D9EHBAa+KOAG/ciLw/iwP9T3QIlneW/sbircX5ZGA4oNvVu9/r6iQbf4dwwZCmlIA48iLsv37j4yABpccJoYQGAKKQnpwTgNthsmvz4dI6KbqV5XHcjtLf8lVGXpYCYpYJiiu8HCwmNA1XqzrIGSYzEEAWwmcJZRpNzzfa4IF2qLNGw0DREwbmxJ1LtKjvCsERtaAgoCUx8LpMaqffo1zj+6CXgdDh73nOukyLOYRzBZSaJ60EReuKttzSxoA5TCiAEQMm9cbBkjkrC9p1nzYeIAgFiuI9rL3fPWXI38aMm2q6nqYyi/VxAX5y1RvUu3qBTDy2YzNvksD9Jh2oNKtJGpA2LTZd6mPeNoKyvUU9KSkbirTOPp0IJguGFTV9TDku4Eta88ASeCAa8u/QkFu0EC/kuPsIyUIC56EmsmRrYxfvreKMn4ZyFli3nVlgy45P1D9CWeZcwnpvi9i2OxtGKKoKdXdCsFenusFlweV//1KgmJ5DhY6CdNka0MXLcqbve8L1q+Q8CvmM6ggpCO6RYffR8a5Yjlkhby511IVNUH61zOABFhjBice3sQH9z1H+JWziDmXOdth8/l2wrrJHIIC8uauPBKFLXxkZemQBCw5anYZDu9cGWMmI2EvASLWK6MzoHsFTC4TMKGigsRJ9LDl8EbrDaKag1e63l3O0GUd1Hfr4wgQutR5xhYdDoVH6TEd1aEro6kAhC2Hd8KjRBcdZdbuuy6lzBQC36tU6RmCGd1hf8sN+k0bdSKg7nAsDYpBnS1w856/PMDoy3PhiR0YI9ILi+/9VMiTx5IdSfnBkDJL0JHLq7SHvFm6UJbfH0x8ASp5pcIEwrrDoSsTaJqSfs+pOArXxTLN4AKh8j3KH0cPK6ScPD3W8A1sXKXYLvc9rMESCRdlfUeAxPdo8uG8bvHcxTbadJOY56E7LjnTQlfoXUcjOFq2ewtUr93E0NazkBZ4HswYFptqOokorJg8gCo1hu0rIss7oOt7TrTYUt0hIR0EGm9Fp1gyIq9kQpEO8HxFh5qsVOczkW6DNla3MeOD9cpmE9en1ZVpCeZBXg+tDhw31jTRpw5JqZCmPBA2TF6qa5LlepJJwRmKEmThlrnn8AgONGKGycbqdgbKQJElV2BeiV+qHp6D704YfTjHZ4+9ImcUTy6ripSdoyyfUcqE1xByf5FHgGuzxK9XsB1YPqM4AZ+3nb9S8usVFFZBFEFvrShUIChyyF9QvocH1XrQc4RsXMvPJxQqyMXxLDDkEW26YLKxppleQzrO00xL4t4ccE0Pkg6ppnHmzt+geOQqyaNhmJM9zjQEs7rF1poO1YDK3Y3wG1xCHITUOgQjpO/Nvt+QnuHny+5Ol37MXQR2aXQLen5lsRxc6V8eLtS3HOCqchsU910O+ad0nvDRLGoJJBQIxpWGVUpQNtc00m/4jqcro0kuNU1ermskpivLSsvBE4o3/qyr9p1qjaxAkTZxwyi5K1LLNckvF+k+1laPJXjVVJ4kMUEfyfHZj15EH8nKVQj+Z0WAIscT6jvl/JJna+Ooi4T8G5+DU045FDnl05QrQEhnihI93EFeK0MP+1O8n/aHsi+lV3a2dofNvBQUoQAxnup984bB5urmYEaRV+KYahSQBkZFdDIK6IelgSMoLprsOyM31LLTOAjf5iChMfdWIx/8x3/g4v2/Jf5Og9ohgpc3oGiS1Ax2XGiWHgwpgijK4cwBgYbHonzumSWLPVtu1kcMk6rqEGkFmpPwGFt9pyDXFq6Q6z/PXEH0St+hKNOqMwrghmGy/fxFFvSC7Mi2Gi09aRQlO61scAcNgQ6WDg6kdINtNXUM68oEs0KafFeuW2rrpEtVV0gTaaHLPI4arV0pGAhlbWi7QJEFI8/285ckn4Wl1qgCuXbKgciD52BjY2Kiq3vnMUAfUaDI4UVp5SmENOyzDTzbQHge8na0PCZFTGxsNUzk8BSExZLgR6SqVgqUiUkRw3fSrfqjIE8eQcQw2VjfRMYwgq1f+ep4ySp5Wfqrn8zfVVBKSy9fUCR0TS1QfbttDDylo4BFsHMgXDK6QVV1Pbd1Q619LTwhVXHenMWpv/kl1Y89i9N0S8JSXAfhWdjaIkLoJAyDV2tDDBm+vkaaX+EKHPJYpJAADg1cB3mltUkOk0HDYFvNJZIKxStU4wj1ndIu2/dFVmn0N1Y59S3pFBtPNuNVw2DrhVriurpxy3PwdTgBatdzEGhYZLHJgZMHD7nErbvAgOFvbiqjSaJpDTbVV5MwdFmGncfzeeMZkj/CQYIkC5Im1wIWSRiLbL1Qx5Du6/RcSl6N07JN1fpHoOG5BfmuAfrVLJ8+8Vv0L6S38zwui5hkKZJXguFgYJLBIIeGIQ3YKJDB4Towh45OCkdZ6EjwpKbyZ+QsKFDIuAyLOHSZJi9faiRpFAJdjr9NNcv+3im9soXXvQTF9QVFooc3VrcuQQ+DoyZif0pTI5WrIxy5xk4YJq+daWJKM7B1KdbOgkWmN87s6eu0/WwfdsMYaHL1UdBMuXnDxrF14rrJ5toO+gypDnEwsHHwPIGBiU4R21euqtnV8zwyePLGrdo2afGHv4VxsVFuvYWnVpiuis4d0s6ytKtGJrkksDFxcOVk5ZVg9htrmplW6GG5NJcQdVstfGSjO2gYGJgSjetBwjDYVCvNEnyjqTvRsJzGHBAxDF6payBuSOS2cCykC3PpnBtPTnCW0jkKHHDlgfKMUWRjTTMDCj0shFCreRPpqFtXuD+luTEtqc8vSPTwycdfQrsu1cNFAVnhkcImhy1X556LLQwsYWILaeEoPIkevgWkcLCFJttEYfg84WAJE1OUsIee5yKEEYBPN9W0sqjJ+roriH9yrJckzFLw7066dZOMyi88cD18Gxs50CqxdS25wojpFq+dkXeUOALc6wUGXjnPib99kdafvYcXkzpCx4O0DbOm9Mfga2vius3Gmn4iCiRoocxMXQLtlw8ix5Nt6HgSDhY2bDbX9BHTLTniiGXaR0W/I5YozO4dxZdHLkd9S0MqEV6q7mZSlesoHvmWNq7inaXoLyIHe1yI6hav1HYS1q1A8VMJTRkgrC5OmtYshCNwndJZhm87Je9/KT3zXAk6nDIsXqoO06dodr0yvxCKX44nr7UwhVxI+KsyfTDPx+u2o43klnhQMZCb9aBf+JoPp/TMFPJwMQdy6eofOpVpCoUnSgdKiikmMGg47K27SqGglr5+g1YSPS9QD5erhL8ahEUJiuvpxHWDLZd6aDYs5vH3Rr54+qLqyWlBt0GT6pVZ0+K5lnbaHJtF0+PGix9z9D/9nPpf7seZkFZ9Dv4BmFQImPi3/YkAtSxh5xYONqaQGjENeXuGgYOymwuOVJIIwobJxgutzBpydpMyLDDxffL6VxuIFUZphmRhqS+JYO2rI0e6F842MqWMr+Q4LLDwgoNYof4v4lCgZFU4XTTZWNtIl2HgW31WQlMG6Dbku1MFA6doIYS81smiZD3qKD7bar4SQmBhMK3rbDgXolc38IS8f0byq2SF6QiPWWGSVsKi1HZoIzk++PvNFG8pLyxqI24j0D1HqeP9GjtyDyPkMw15yp4QFkIYOEoJVFJ+ONgYpc28J0BIJUC75fL7yC00Sw4X0vWqXIr6aUHxjmlPGFiWgW3bmKaJ7/zu3uphpQjxz1FKU51s5ilN5+XaTtp0kxQoLkmrOaG6jby+rAhWQW5OhUfcMnmhq5UeYDFrc+SRf6Hpf+7CHUqCHiC15UiLUMsJf+y1SbsWL566oHzi+uOnrIg06skjcQBLV51FYNAz2fD5eZJuub2Ci4u8uQtftYwIlpCVRdSSSHkVwQlKdoER1+T50+eY9crx0rJepZzyoh0TAzO4nghSns1LZz5n2FUWjhXSpAHDnsVLZz4n5fpzpo2JphQyrqonalgJAPiARcIr8PyZ8ww5Oh7l/PJ9/2qARxa5pArU8i5o03kO/ePzFCYWS1OVJa1VvWAqsSnNn8ruxNXRhcsYgqQoAFm5n7McqWBReAqPbElX7ZjgLGIIacG6rSZEQfMt9vw9s1GW1u6StvBcOxAQIcRdPbD8UUHBlTYApmkhhM2safFq0yBX1JUKcvVsY+D76PBNTA0cdAyhY+KSdlxOngszN7SAGYpR+09VaLVjcMvG65/Hms4h4gWI5WA6C5MpiCZhNgmzaQrjGfa/V8/NiUWYnYeZeZjJwZSGiM8jEjOI2TmIpWA6B1M6TGWxEnmuTWbZ934N+fEFiGkQ1SCekd+JzcvyojmIZmFmBTGak3/j8zLGMjCtwZSGFytwa6pA1eEzpCYSECsgJvMwk4FYEjGr3p/OQiyFF5+H2QWYSsKURn40w95Dn3FzIgPxQsU0ubM6tyazvHboM/K3MzBdhOkFSCwg4imIZoL6ingGZlIQTcNkFhILpCcTVB0+y83JvORRtCj5NbsAsYTkVzSLHUtTmIjCRBImcnjjBfJdCd556ln0qZzqR7IzST89bqCSd9DUHlPu8zy3SAZT2aM4OOg4CPSChqN2k44aSPxVm42LpiVZxKLXcdgWCpPRCsHvK4m5fBHbtgNQZGUQFuEPEGpGCdwVCWzXIGZYvFgX5uRClnBykZHkIr3JHO2pHB3pHD2pHAPJLJFUlobFHNWLOVqSWaa+SNP2N39g+N+/wcx/2EfuvmNMfOcIyZ9f4uq6j7j18BGm1n/M1PrjRNcfJ/7EMWJPHCP65DFi6z/i+uOn+PSRM1z68UUSTx0luu494k+dJPb4GUb/xwfc/Mlhxp/+gKknjxFbd5K5J04T/dFxrv/9J9T89CKfPPo5V9efYOaJU0w9cYrJJ48z+dRRok8eIbbuOLF1J5h5wo/H75A+vix9gugTJ4iuP87UU0eYevIoU+uPM7PuFDM/OsnIDz+k/RfdnHjsc4Z/8jHTj3/ExCPHmH7iGJNPfcjY0/L92LoTTK4/xs317xP98YfM/egoCz84xfXHTvPZD09w+Z9qmH7yBLEnPr4jDaW0/P3Gjz+n6R9rOf3ocW786DS5J08z+/hRJn9yjPGnjxFdL9+bWn+C8aePE13/B2LrjhF95BgLP/2Iqz/9mBOPnaLzF90knj5BbN2nkl9P/YHok+8rfn3E3CMfkH/0QwqPfsLiQx9z/YcfMfL053z83deZ7UoyGy3wRSLP1YUcl9JZLi7muJzO0ZTOEUpnaUxnuZTO0ZAu0JLMUJ3O827O4mxBJ7SY49J8htZkjuZ0nqZ0jsZ0louZRVpSBdpSRS4vFmheSHMhlWVv2uCXgxlqEhma03lCK4hdySy35hZxXQ/LsgJQ5N2E5d8tf/AlQRHyWrGYYfIvJxvZ2nmT/dUtHDnbzuELYV6/2MPuSz28Xh/m7Zou3q7r5LXWHra2drOtupMjR3o4+t8OMfztTwn/54MMf+sQQ2veo+Ox9zn7rb20fe8A7WsO0vzQQS4/fICWtQdoefAAHQ8c5Mr9B6n/3iFev+8w7z/yIVceeo3W7++kfe2btN//bzQ+speGH+zg8sN7aH7oDdofeJsrDxym9XsHqHv8bd754Yfs+dYhah54k7YHDtGy5l2aHzpA89q9tD24h/Y1B2h/4C0VD9K25iDtDxxckm5bszQt/75Fy4MHaHloDy0P7aXlwQO0P/Au7ff/nprvvsFHT51m531vceah12lf8xYt33uTlgcP0LR2P6GHD9KyRpbZ8uB+Lj24m+a1r9N1/37C332Xmu+8y/7vvMnR9UdpeegtOh44cEcaltN48dHD/GHdUQ5++wB1f3eY/jWH6HxgH5cf2UfT2v20PKjoXvMWTWvfoO3B/XR8/wDt332Lrh/s5+za19l531t89OMzhB87RMcD79C85jDNa1+j5aHdtD24l7Y1b9D27d30fft1Rv52P93/dQ8XHz5M/fqjvP3gXhqODPHxqRHePdvP26fDbG/oYntrhF2NEfY09LAr1MnOUCc7QhF2NAyy7XwLLzf28q+RBFVDt3mtNczGz1vYdSHCnoZedjf0sDPUybbmdvbWD7Ov/hr7W4bZdu4SG+o7+XlXlIc+7+Plc23sbuhjV8NAhbGfg3Ud1LR1BwJyr1nl3oLige1axAyLTU3DXDJsZgTYllxKpgRMCJgU0vFyVoAuBFkhSAuY0W2OfNzHzE0bdwHEFw6EczBowYgDYwJGbZi0EFMyMmbBdQeuOxjDNqdP3GD6tgW3FuHmIty24KaAySJMZ2CyAGMm3PLghgc3TMSMzdiEzaefXEO/VoRRoTDjFoxpMFqAWxbcdOCWirfvkL69LH3LgduepGG0oL5lKQy/gHGH6KTFh8d6yVxNw5gnUX+jFowZMGGXvjNqwIQG4zpc0+AaGEMWnx7vYXLChHHv7jQsp3EKZsYsTh3rQR+w4AsPvtBgQodxQ5Z/24FRB8ZNWfYtU9ZlLM/i1RR/ONbL9KQFk67k5W0BYzqM5WRdRy28hMCZNBC3bbhuIKKQG85z7lA9ubxBWkBawKINCwLmECwKiTpeFFLpkBaQERIJHBOCPmASQUq45ByBJiAvZF9KC0gKj4Irva2mbNA8wbyAJsthW9coCcOmIARZ4VUc88IjU8jjum7gBK8ywy3hbx3lGWppRpEgqrhpsfnSIB2mLTfzCuBmI52XLRIcu4EQeI70N5IwbTbWd9BnWYGtfaDj9fHOwbKvTL+tIDk5zWb7Z218YVgKYOSgdqSSbMpGAF/16MjXr5kW2z9rCWyqfc0ePh3lC1bvK0RRFn2EBHDTtNj2eQspwy7VxUfiUpa3vE1MiX/JaxZbT9ZzowxzVUl0gZuGxbYT9eQKSpVouaW6Cu5Mg2JN2rTZerqVG7qBvPKvrDHKUL8WkHftoP4OkDAt3v20kYxulLtWU8ey5ZX0lpADDllPBFfTOa61hI+lZnJLbevJJyYSovTymWayxYL69gqwXooZtm1j23ZQXgUzihMw3AblL0zgW2AsGBabzkXo1S154Bg0kDp1FgqhK6TqVDgS6lkomGy+0Emv4R9UrizEDYuNNWH6dV/bpTRWrn+9c7B3lJS7EtuUw8d6dSlQ5NIL6AApdEt6RIXBf88/m8Bnu6sOHC02nushbqheWNbIrg+DFbZyFCcVmzg6COlSddOFDvoD74eVhQLy/GbThQ4Sug+V0WVbBAIl28r1D2f96uMRNy02nosorJdEHwS8CgYXVyKdQUFgihSAQdNm27le5V/Ld93glAlE2f8BvwSIIgUEo8hzIHkxq5BteNf+qAdq5T7DYktNF3m9UEbknyf8PxGULV9TUDZ9DUHZ9hcSlE3neojrKxQUTwrK5q8hKJu/qqCo9l2RoLhKUIy/pKB0rwoKrApKpWFVUFYFZVVQKgirgrIqKKuCUkFYFZRVQVkVlArCqqCsCsqqoFQQVgVlVVBWBaWCsCooq4KyKigVhFVBWRWUVUGpIKwKyv8XgmIoQelh0HLQl3xCUHaRAPgpIZ/pus2WC50MWPay9yoLc7bDppowQ5ajnviWz7JkZ0nuEg1FYMh22FbdRdKyuXMoNeXKwt3fs4ER22HTuR7mLGfpK0GOEr8c/M4ohSppO2y+0MGQeTea7xx0YFC9u+DXV1jLhgC/rcSXqjFnO2w6F2HE8u1A7jx4lGothykdGLFdtp3rpWiZd8x55/8J3p9AWTjeJf9SSiz1pqzvlppuNOur9KyVhTJB8cAr63xqFPINfOY0i22n2+mYTxPNF4kXdKIFncmCRqygES9oxAo60wWd8YLOdEFjvqBxM5XlhXMdNKRy3FK/VxpnCjp9qRzPn+/iciqvvq8xpcqaUGVNqfyxgsaMSn9R0Aml87x4rovBZJaZgs6kyuvnjxY0ogVtRTQtf29K0TGlaBsr6DSl82w4201/MkdM1SN2B35NF3RGy/gVL+gMpnJsONdBKJVTZVVG082iTigt3x1I5pgraEwXNPVtWX5c0T1R0IiqZz6/+lM5NpztpimVJxbkK/HKr7fP77iqw62CTlO6wEtnw9xIZomp36MFLeB1VP2/nF8z6v3uosEN9Tyqni/PL+mXfJpRfAul82w445NfcQAAAqhJREFU38WNVDboe5XGWEEjp5WuzV7ZrcDlMRAUaSM+mbX4P429VJ2s582zIXZVd7Cl9gqb6zrYWqtiTad61hk821LTyXO1PTx/McLGuitsqe1cQezglborPFMXYUN9P1tqOtlS18YWVdbmOhm31F5hS+2VMho6eaWumw31/TxbG2FjnfxWeV7/+zKuhKbl711hc9n3NtZ1sqG+j2dre3mlrpsttZ1srelka80VxZu2Em/UuwG/ajrZWNfNs7URNlyMsHkFNL1Sf4UNFyOqvt1BGX6dt9bIMrbUtbG5rkM9u7KEX8/W9vJCfS9batuX8atUb7+u8vttS/i8OeDJcr7emV9ba9vYWNfJCxdLvPK/vUXxJ+hPAa0lPm2o7+fZOr/clbXj7vOXOd3Yiq1g9n/MunHZjFIuJF6Q9gQULI+sB9OGx5hhM2XZXLcchuzK4ojjMWS7Fef/073vqne/WrlfPX69cr8Ov/4y5X6z+DxsO9y2LGI5DdfzlAMVKSSV2aOUC0qwAZROHzWkxfMi0stTHt/b+Wpcjd+8qAOOkFc++L6HK5pRRHlCeIGwCMfFdUtugnwXQUK44BrgWDL6addYml7++0ryLv/9z5X369D411afbwKNf4L6CNfCsc0lAvLHhOXLggLIjb23ZAlmeYGfFYoeCByEMFfjavxmRmyEkEsu310R3H2vEgiKu3xW8cqFRToJE5SOBMzVuBq/wdEGXM/FcWwMw+Be2q8vCcrSJRhlwuKogzZpShk4UvdUFGV/xbJnd0vfK+/y3/9ceb8OjX9t9fkm0Pgnqo/f0e+lGv6SoHxpVlmiBVOCIpTNsb/Z91/0yv56y57dLX2vvMt//3Pl/To0/rXV55tA45+qPveWjyB8yQvLalgNq+HLYVVQVsNqqCD8X8ZgdRwcqH8XAAAAAElFTkSuQmCC" width="250" height="200"/>

  3、通过上面的研究你得出了什么结论?

  三、合作解疑

  1、交流自己的学习成果。

  2、讨论交流:怎样画图才能画的与原图像?

  四、巩固拓展

  1、下面哪个图形是图A按2:1的比放大后的图形?哪个图形是图A按1:2的比缩小后的图形。

  

\

  2、下面的每个方格表示1cm2。先按要求将图形放大或缩小,在回答问题。

  

\

  3、把下面的图放大,比一比谁画得像。

  

\

  4、你知道日常生活中的哪些地方也应用到图形放缩的知识呢?

  五、总结反馈

  通过今天的学习,我自己学会了______________________ ,和同伴学会了______________________ 以后我会在_____________________ 方面更加努力的。我可以得到( )颗星。☆☆☆☆☆

  以上是《2019年北师大版六年级下册数学教案:<图形的放大与缩小>》的内容,更多北师大版六年级下册小学教学教案请关注新东方在线小学网。


英语+新概念学习资料大礼包

微信扫一扫 自动获取网盘链接

更多资料
更多>>
更多内容

小学英语资料大礼包合集

扫描下方二维码自动领取

更多>>
更多英语课程>>
更多>>
更多资料