2019年人教版二年级上册数学同步检测:《第六单元》

2019-10-22 15:41:00来源:网络


  

\

  

\BECAUAwEIoAAAiQigAABZCAQAQEUIBALAQCgCAiBAKAICFUAAARIRQAAAshAIAICKEAgBgIRQAABEhFAAAC6EAAIgIoQAAWAgFAEBECAUAwEIouIjb7fb3h9/BMQXOxmx0cluLhoXk2hxT4KzMQie2tXDUHq9/am1mnp+xYGXH9tsXx8dt2wsH2XZa91XmGNTqz24TOBdX8Im1LiDr8pl2S2V7F6xMW6XXf/PC8rNte9ub2fbMcak91xMIWkImcE2u6JPamsBnvPPPtLnXxlGh4F0WllnhqzcUtLyerfMuxw7ehSv6pHre/WWe7y2TWWRKt5JLt5gf+/jNi8zoMd0qMxoKf/7e+9GTjw7gd3EVn9TIAnLUYj+i9lHHO3x80PuxzV6ZWvCqhbBWmXPttx47eBeu4BNr+Q5B5vnRdmZO+KUQ8JsXltF3+FtlWoPhzFAwq23gHFzBJ3ZEKGip07JYZz4+2GvrXUNBZj+V2ijVaTkHRj8+yPYLnJ8r+OT2bv8e8U6w1s5Iu0LBPz3HdF229HjvucxrLf1mxwJchyv4Ilo+2599m3/Wl8hq70Lf7ctqI9s8Wndmf+947OC3chUDABEhFAAAC6EAAIgIoQAAWAgFAEBECAUAwEIoOMiR/zzrmf8M7efPzH9uA8C1XXZmP/K/ap3hWaFg5H+ja+ljZnvPJLwA5F1yxtyb6L/u/xbFj8/v5vobDf5baD8+Y7/F7fZbFqTHsd+/cu3v9dHyXPa/JB65U/DqhfnV/QNcxSVny81J/uv+bzFdFvO9xTW3SHzF/W8b3/H5UQ4ae22n+noce6Xt9aJcCwClBT0bLkbvFLx6UX51/wBXcbnZMjvBf91H7xZ8xf32ET9NfH9+VEPB3iJb7utP4Kjd3Sj10/rxQSYU9PRRG+srnWUcAGd2uZkyHwr+Lei97Xzdfz42+Ip74eODrUVy7xb8//uO7++InzsTtY8parf6M8/VQsHMLxKeZTHeG4cvTQL8c7nZMH3rv3I/PtfOz7v4eyTu7ne0v91faeitHx9sPedOwf8/d5ZxArzS5WbC3Dv8+iLe8ln/9+dH3G7lOw9d7W8ofUyxt5gf/fFBqa2asyy2QgFA3SVnwtIE/v350fTt/UJD8fFwh+D78yNumW8DtvSx2W3b+I++U7AXOq50t6AWcF49PoCzuORsuDuJf93/8y7763P78/l8KPjvFw2PDwXl7y5stZ0JBaUFP1On5S5Cbbyv8Or+Aa7isrPleqL/c4v/v+9it27DNy0Qj/9PQeP3CtL9fH/GR2MfrR8fZO8CZOpsvZbxqoVZIADIM2Me5MjFqOVOQelfFfTcDXC7HeD3MrsDABEhFAAAC6EAAIgIoQAAWAgFAEBECAUAwEIoAAAiQigAABZCAQAQEUIBALAQCgCAiBAKAICFUAAARIRQAAAshAIAICKEAgBgIRQAABEhFAAAC6EAAIgIoQAAWAgFAEBECAUAwEIoAAAiQigAABZCAQAQEUIBALAQCk7mdrv9/eH6HE/gSsxUJ7G1cFhMrsvxBK7IDHUCW4tH7fH6p9Zm5vmRRWtvDO+4ED5u7144aGmrdR9mzo9a/VljAa7F1X0CrYtIdlLO1htZtH7Kzxrzb/CzrevjuvX3TDulei2BMNtnps13Op7wTlzZL7a1WNQm5dZ3jbU6o+9kM228yyIyM3i9IhRk67/L8YR348p+sZ6JvvXWcEuZUj/r/kpBRShof67UXsvHQaXjNfLR02MbwO/k6n6x3lBQK79+rTaR9352nR3TuywkvR/ZlNrLLu7ZuzaZPmeUAa7HlX0Cowvq6C3rI25tv2soiOh7d58p13vHQSgAslzZJzC6wLYsFi1fIst8fLB3h0EoKN/Gb2mnVG/m8WwZ3zsdT3gnruyT2FtYWyb9kb5H2xMK/qvleJbaKD3OPjfjTsG7H094F67sk8l+tt/zHYCj2ivdLZg5xisa3Qe99Y+o53jC7+fqBgAiQigAABZCAQAQEUIBALAQCgCAiBAKAICFUAAARIRQAAAshAIAICKEAgBgIRQAABEhFAAAC6EAAIgIoQAAWAgFAEBECAUAwEIoAAAiQigAABZCAQAQEUIBALAQCgCAiBAKAICFUAAARMQbhYLb7f83deu5lvpHl+9tY69ea3s/dR5/tp47at/UtqfHuq3a41I7pe2feTxnO+KYlvrae671+tsa19a4935mjL1UruWYz3oeZnubM600+WUmjt4JrLX9xzIji0hmcsmMsdTm3iTY0ubo9vTInAvr8j0LTO92t9TpWQxbj+mIrXHUjuvRobNnP2X7Gw2Ie2M6IrDBltOeXV/3fxfAx+f3cHsjF31L2b13DdnAkV3Yn/XuqDRJtW7PjG06wuxFp7dezz5ofbzVT3Z8rVrP695x9J43rYFp1nhb+z7yGMHaOc+wr3vcv/79/Xa7/XvcYT059Cw4vRd+a9sjC+KMbSgtKqX9V6tT+vve2I6eADP7ejSAtZSfFeJqbfYc0x6Za27GfujZB3vPl87XkfMg03emLzjaJc6yr/v43YJa2s4sqK0LQe259fPZyWxrPOvymQlvbxFs6af2ODshPyMU1Laj1u+6Xm/90vhayv+UaV2keo5pq9o5Vavbsk0joaD1Gtprp9Z+tk6tPTjaJc6yr/tHjH6CkEn92fqlMpkJqmXSyoynNxTU/l7re6/f1kl8q17PuLIe26+NtzSuUjjoCTktx2zvud7FPRt4WpSOY8+iWCrfE4yyY830n3m9JeT0zlGCA6MucAZ9xX3ks4NF6+Ta+vpIvdmhINNe9u+lyWmvv9K+bhlbrZ3sz15frft9a7trx6hlbLXtnhEKeo9pZnu3ZLaxVqe3j5Yx9J5zmfG2zjez5gPocfqz5+t+j/FI8Jw7BaW2s4tUywLSMqFv7YPa32t1W0NB66SWnXRbZfb3Vp3SuGacP62LVG0bMqFlr78ZoaB1sd4aS/Za6Oln3de6bHZxPiIUzDiW0OPUZ8/358fQFwwf1ZL9rFDQU6/nnUGmrdpivTXZ7NXZK1fblz0Ta0+oaNEanvb229bjUjtbf8+Uz9bJ1us5prVxtI4rO75anUwo6l1Qe8ZcKp89l3vng9bQBlvOewZ93f/z5cKvz8/o/VrB3iTeO3Fk+qv9PdN2NlDsvdtpfUdTqtOyYNW2ObtQ1banV+ZcqNWrjWdkH2y9flQo6Kl3pNFAmSk/+lprkNk6p0rlRgIOjDrl2fX9+fF/F8G/gPAV99vYP1GMaH8HOusdUstkW3p+PTls9XNUKGhpY+biNmMy7A0YLUFv/Xp2cu8Jh7NCwRFq4WNk3+3VKY0j+3ym3t412BMAM30LAjzLW55pmYu0J7VnF7IZi0FP/drisrc9o/vgsY2RcY5OjC3HeF0m087IeGbs671t2+qzpZ8epX2WDQkzzpeWhbpUL7tfRq/ZvdeEAp7FmQYARIRQAAAshAIAICKEAgBgIRQk1L5Fna3fU6b2Bae9L0O1fLEvO8YWtX016wtbvUpfwDuyn546LWN75hfSfPmNq5rxZdrf6rJ7pfeAjkzSvaEgU37vW+Et7Wa+ld3zzf7MN9VrfbXuu98UCkb2W+vYhAIoG5nH38El90jxQH7d43Yr/9fIve/ye/45WHYxqAWPGXcKSq9nxlZSG0dtH/TU+Y/lV2zfbre4fdT/o6utELb1eMRocM2MbWy/fcfnx6pcYt+Nbh+8yt71wz+X3Bv1hWF+KChN0D2L6Lr8uu2tP/fqZPvLvgMtldtbbLKBqdRPa/1/Hv9Dqz8L3d6v2i6Fkr6+t9X2WSa0tY6teexfn//97aPfn3Fv+HWkJlOuRiiou9zeqB7A78/4qISCVDuxfQKt6+4t2K16FpG9eluPt8ZVa7NlezLBJRNi2t/tRvwJBf9+vfb358duKNgb7+xQsNVPdr/2jK1vv/3X9+e96VeUm0y5MoFg2+X2yDNDwbpc9t3bSCjYaru2GGT+3Gqntm1bfWTuFJRkFraeul/3n1vfX3E/yccHW2OuBcqesY3st3++4/Pe/tGBSZUrEgj2XW6vvCoU7C2CM0NB6UQtPb+3SG/dKSi9g9zbpsy29t5N2Gqn7x3vz+fjuV+1vbVvMmNsOW+yPyNjG99vi86PDrLH3QTMmTgn911ur7wyFJT+7Gn7sXzr5F5bVErbUns8GgpGF8Q9xf36dY/7188v0/rYvQ3eGoi26mZtLex7r88YW89rP1o+OqidR1vlTcCciXNy3yX3SvFgJkJBz8R+ZCjYa6+2qKzrZYJEZpylRWmv/czCkNH1jnd1zL8/P+JW+TWaW9u09bh3O7bKtu7/lrF17be/+j46qG1Haxng9S55pb4qFNQW2Z72S/1kJvbsu829stk2s+PvfT1TrhwK/vtFw2woWD8efce9Lp/5OXps1XF/f8ZH8neR95zzAgFn407Bvsvulc0D+vhv1XeCQc/EvlXvbHcKttooBYbWoJEdf+/rmXLFNhLHvtRW9o7HTK37/6hQ8P35EZlMMOsYw6sJBfvslYrWd9y9gaDnTsG6Xm08tcU++851q05pgWu5AGvtzLDV1rNCQXZ/tY7t6P02I9QB5+cKBk4r+xGMHz+lH/LsLQAgIoQCAGAhFAAAESEUAAALoQAAiAihAABYCAUAQEQIBQDAQigAACJCKAAAFkIBABARQgEAsBAKAICIEAoAgIVQAABEhFAAACyEAgAgIoQCAGAhFAAAESEUAAALoQAAiAihIOV2+//dtPVc5vVavWyZq8luU89+6zk+vdbtZs6DvZ9sH9l+Wp7v7afHM48PZNSuwXd22b3Se0B76j3WGZncRxfGGUqL1JEXSku7LfutdzFs3Qc/z+39OXt8pbFm++oZ25Gh4JnnG+xZX1/81yX3yN6B/Lr/m2g+Pr+b62fKZibe1kUnUz41gX7d4/bxGftb3r+IjcreIRndb3uvtYxl9sLbciyfcb5ttbUVdmrb9v358adc4Zwz6XIme/ME/1xyb2wexK973L/+/f12u/17nKlfKVd6t9M13gll/+s7Pj/KE3Sm/VkXSM/i1jqWvTZH+86Gtq3XsttQK/uM863UX7md3Lm210fPWGEGoaDucnsjewC/7uN3C/begfa0kzFyl+D78x6fn+e5U/CqUJBZeHr3QelcqNXJHM9nnW+1cFNr5+t+i9te4t7oZ29sJmNeSSDYdrk9kg8FH1HIBN3v3lsn99YFoWu8359x//w+1ccHPaGgdb9lF5wZoWDrnfT6+Vmecb7tbVN10f7+jI/bPT5/Pjq43aMUD7ZCR2vghdmcd/sut1dyB/Ir7pV3MtkTojahjrSxfr134vz6XIJAMhT0LiAj2/yMd7x7fWw93xs+1m2O9JEJOtl90VO2Fm622vn+/Ijb/R6fn9/x92OEwrXWM/GasDmac2zf5fZK5kB+3cvvXrLtrCfu3nc6owGk+Nr6uxSJz3l7nDUUZB7Puvj33qVn+2gJOevHR59vWyFnPxQ8XF1f9yjdLVj3kdkWEzZHc47tu+ReKR3M78+P3S8YZupn65X+3vMOMVN3y+O/uPj3Uw9FPY4MBT377Yh32Xv1a2PI9D2yuB91vmW346918Pz+jI/kvz6ojSHzPHCsS155pXfNj18u/HtbPVu/0l9mki7Vz/bT3UbyTkHPRNy7z7KPe/ocCQWt+6AnjNTq1eo843wrhYHtdr7ifvv3L3tavtCb7UMg4GjuFOy77F5ZH9C//2b64Wdrsmp9t1ubmFvf8fWWmxUKZo21pueda89YM222BpJSO3ttlRa37LvwZ51vpe1ItfP9GR8/+7zhuzu95wHM5tzbZ690ag0XI+VmncAzwsksz7hTkF38am3vLdaltvfG0rsoHnG+bdWbvWD33CkAXscVCVxS5m6UHz+3m2Wuhb0FAESEUAAALIQCACAihAIAYCEUAAARIRQAAAuhAACICKEAAFgIBQBARAgFAMBCKAAAIkIoAAAWQgEAEBFCAQCwEAoAgIgQCgCAhVAAAESEUAAALIQCACAihAIAYCEUAAARIRQAAAuhAACICKEAAFgIBQBARAgFzW638i673W7/91N6fqvtx9dq/W2VKdWptb33XM/29Ohtp7Ve774eGVPLceJ6jpwbZo0pM8Z1uTOcpz3X0si+nn0cruSyW/2sxaO1/t7Jmj2J169lFvi9PzNjzPRVKnPEQlr7qY0ve9Fv1Z2tNBm988TzGx05N8wa0+xQ0HO9luplx5ap3ztvnS0QPdslt3jvQH1/fvw9Oe5f7fVH+t57PXvhty7U2bbWz2d/SvVaxtaip73ROj3b83X/ty9K51mtb36Xq4eC0esi03/p+dZ+Mvu7dd7aKvtu1+wlt3bzIH1/xv3z+8/fv+5xu91jb75+VSjIpNr166UTe6/N0UU8E1haU362z9awsjfm1r62+t70dW8OAlttz9pvnMdRc0PvWFqupb3xbLXVMoaW11rmp975IVNHKLiY3AH6ivvHZ3wPt/P/ZWsLUWmhLrW5dwLXxlta+Gt1spNR6/aMKI2/NL6tce4Fo959HfEdnx9/6n98ls6u7Ym1NHau6ei5Yeb4Sm2PXRf1fjOvZ+afWrm9ej37+h0DQcQvDQVf9/27BC3tbJWtnVR7j1vq1S7Ordeydfa0nvzrPo4IBevHpYk201atzfq2fMf3d0TEV9xvt7hVgue6zZYgxjU8Y26YNb5a2/3XRbnPbJlskBi5lrLz1jtfm5fb6vKBWibrxITde4KPXPilE3ir3Pr5vX72ys64iGsXYC20tIwh+7Med28oaNmW//fnrkHto4SeMb7zhPRKrfv9GXNDz3XRMobaeNbPZzwjFNTaHJm3Huu/o8ttdepAfX/Gx23Olw0zF9XWQrV+3DJBlP6sja/W56wJZnYo2Gt/7/UZz7fu67Xvz4/Uxwg/f2b39TtPSK80OxSsn+udG1r1XuezrotnhIIj563HPt7RJbc6c7C+7vuhYOTkzlz4pWS6107rBVm6IFou4pYyPf3MnGTPGAqOuFPQMgbmOuPc8CxXCgWZNkfmrXd2yb1SP5hfcT/Jvz7Ye752ApfeYWw93zuxtIaClv5a93PPu5tSP5lQkN3X/6/+Zda9vnq3h2ON7vej5oaZY8oE+LHrYk4oKL2evZZ6563HPt7RZbd6fcAe/4+Co/45Ym/9zMRfe9fQcvK2JOHeUPAKs95t9+7rn4+laudYuj1+laPmhl5Puy6S7beMa3QMvXUe677rdfueW92h9M6uVi/TTktweGxn/VprEs5ewD3v4GfItJ/dx3vl99oYURrTM/Ybz3P03NA7ptbXR6+Lnms100bPtfTqeevK7BG4qMyE58eCAC1cFQBARAgFAMBCKAAAIkIoAAAWQgEAEBFCAQCwEAoAgIgQCgCAhVAAAESEUAAALIQCACAihAIAYCEUAAARIRQAAAuhAACICKEAAFgIBQBARAgFAMBCKAAAIkIoAAAWQgEAEBFCAQCwEAoAgIgQCgCAhVAAAESEUAAALH5NKLjdbv/3eP1TKr/3XEufs2yNu7Y9ADDq16wsW4vl3t/X5UcW3lqZrTZrfdTGDQBHOO0K8/358XfRvH+Vy2aCwNbfswHi8fnWRb718VY/tXEBwAznXGW+P+P++f3n71/3uN3usZcLsiGgtKBuhYRaX1m9oWBrbD4+AOBIF1hZvuL+8RnfhRK9C+beO/vSnYLS4+zYMh8fbH200do3ALQ4/crydd+/S/BjvXDu/flYvvYOvOfLiZkvL/Yu7rVteiwnMADQ48Srx1fcfxbqzjsFs2+393wXoec7BqU7CqVQ4PsHAIw4/8rx/RkflS8bbi2Yo18cLPWz1edePz0fH2T6EwoAmO0SK8fXvR4KSgtt9jsCLc/39tHykcReuKkFCYEAgB4XWD2+4l741wcR5e8S1L7QV2qv9PyzQkFrfwDQ65Qry+P/UfD//xzxz3cNHu8cZL5YuGXk44PM85mxZEMBABzt8qvO3hf1SmV6nt+7+1AKFJnb/HtjHfkuAgD0sLIAABEhFAAAC6EAAIgIoQAAWAgFAEBECAUAwEIoAAAiQigAABZCAQAQEUIBALAQCgCAiBAKAICFUAAARIRQAAAshAIAICKEAgBgIRQAABEhFAAAC6EAAIgIoQAAWAgFAEBECAUAwEIoAAAiQigAABZCAQAQEUIBALAQCia63Z6/O7N99o6tVO/xtb1yr9gnW541jtF+Wusfffxb/bbzsWecmTqz2q21M2s/Z/rZ++npb7Rcrc7s6+EZfTzLNUcdx0wqP6/3ntzrSalWt9RXtt+jLqaf8tlJeK/OyP5umVRa2996LTOmTH977WTH27otmXGOjqtl7Ecsis86H2ttbr3ec0x65orW51vP+8f29v4s7YeW548uVys/e8He27ezr7FnuNZoF8Wd/HWP2+0eX731E3UyJ1pr+V4tF1PrpLU3odT6nrnAZxfJlnZ6F4sjzoFS/Z7+914bHVdNadHbK3+F87FlMWw5Ji3HozTu2vb0nvczj2fGEfPYyH5bl5kx9qu45NbsHoSv+3IQjwsFmYt2XS574WXH0TKZlsZc6mOvXGYCy/ZT0zvJ1sqPhoKZ50BpnLVy2WM/Y1w9Y255/qznY0v5zDHpOR5725DZtpbzvjT+njmm9vwz57HHx637raWf1jGe0bVGG4kd/P0ZH5VQkGpno3zPwlPq68gJeaTv7MW6NaG0jq913Huvj04O2VAw8xzITIx7C0ut75FxZZXOh5YytXE863zsPR4929V6nmyNM1Nu6/HIMetZ5DOOmse2xtjad63/0n6/WiCIEAqa+81cFOtyrwwFW+NruXBbTvjeCbV3mzJ1SgtF77hmngOl8baMIbvY9Y4r67edjyPnxazzJLvNpb9nz/vHMW21d9Qid8R505Ek1dwAABn7SURBVLPf9vrLjH103juL64x08epQsFd3fZEfEQqyk1zrxJLta12vtc2skWNzRPmterPOga32eybITLnWcR05mV3hfOxZCDPHpPV4ZBe/7OKVeX3d5l4fPXPSs+axWfst00+Ps4aF842o4lWhoFSnNkHNCgUj9Xsm4dKfpTZbLvLMWEfKjkxALf31ngO1NkrbknltZFyZ/dK7T69wPmYWjdZj0nM8avtqr81ZC+9eH3ta57Wj5rGe/ZZta++1lvOsZd55pvONKKG4IxOhoPdAtFy8mYl35ITIXhy9k8PoJJwZc3bbRsuty7dMBqU+Z5wDe6+3LESti/DIuFrs7Z8rnI8tx6O2XbX2R0NB9vnM/tgbe8u+7D0vW8dW29+j+y1bpvX4tfb9bOcbUcKrQsFj3Z4FoXWiqY0h+3xP2cxEUpqEWxetlrFly+yVb1kUS23NOAf2xtEzkYyEgtbJrGbk+JRef9b52BMKep+vHY+Rxa31vO/pN9t2qU62n5ays/ZbSz8t19EZA0HERUNBxM4O/ftPEm+x988SZxyIvQmltvjPCAUtSbnWTub1UruzQk7r2NbjKm331mtbj3sWsRnnwN5zted7F7mWcfUaCVq1159xPvaGrpZj0nI8Wtt8rFMaf2k/9py/LefSM+axnv22Vz87hpFtOYtrjfZEshfT3mtHnSizQkGp3NbJvjVp9yxcz7iIjgwvredAZsLJLnaZfdv6WqvZC3Gm3Kzzsfd4lMbfs89rc0V2cc+OpdZvqf+9sYwujLNCQe3xjPO+Nq8LBQDAJQkFAEBECAUAwEIoAAAiQigAABZCAQAQEUIBALAQCgCAiBAKAICFUAAARIRQAAAshAIAICIuFgpm/7KflnqZX2Z01C/96Kkz8ks4XvFLbbL1rvbLRQCu5DIz7N5v7CqVndn23m/cGvnNh9nfWtbzmwe3fvtby29T6/kNZ73bkxnjyH4GIOcSs2v2V8c+vt6yiJYWqlqfI78qNLMdmbIti2hLnyNjbL3rkvl1rHuPAZjj9DNr66361t9nXVuMWto98uODljsEPeFm67XWYJOtLxQAnNNpZ9athaCnTOn5xzZqi25mURrpJ3vrvKW/2t+3tqf1LkltPLUyPcFFIAA4xqVm1+xi0Lro7rWfeffa21d2e7YWzVrd3jsFW2VG78hkg1VmvwkEAMf6lTNs623wvcW859Z46xhb2mkJG4/t974LPyLkjNQRCgCOdeoZ9oh3/KXyLbfQ14tu7wKafcdfu1NRarfl44Pa9pZk++m9wyIUABzrsjPszEVnNBRkx1drq1R+JBhl7xQ89vVYtnUhbgkQvX0AMN8lZ+LZi1RmgZp5p6D3Tkb2+fVrtTsJpTaOuL0/I7AAMN/lZtieRaElFOwtPD2301vG0vIxQkvwaL3D8dhfVksYyHxM4eMDgNe41Aw7eyHOlNtagDN3Cbbq9L4THgkSmdeyQWOrjdFF2iIPcB5mZAAgIoQCAGAhFAAAESEUAAALoQAAiAihAABYCAUAQEQIBQDAQigAACJCKAAAFkIBABARQgEAsBAKAICIEAoAgIVQAABEhFAAACyEAgAgIoQCAGAhFAAAESEUAAALoQAAiAihAABYCAUAQEQIBQDAQigAACJCKAAAFkJBwu12q/68Wm0Me2N+xracYf/syY5tXa5UL3O+vHqfHL09M7avp43H83q0j+x2v/pY9njm8ek9N3rmtN9yfF7psnur90CPTDTZ119xkvaMsfT8yDh6F5HWfTZjPx8VClrae0VYO3J7fh5nj03p+ZYx9NRp2a+tgaPVM+eNZx6f7Lk2uv2/6fi80iW3onYC1g5Q68GrndStC+tvDwUzy4208epQUJtoe8cyw5HbM7IdW+2MLCKj58iM9s+2YDzr+Oz1N7P8yPH5rYv6qEvuhdIk0VMu29/eSXT1UDD7wnhWou7Zzz1jaz2PesPIsyalI7endF5lJ+rHv2fLtoy1pXxtEWwZ3xkWnWcen606W48z49kb28zjwx+X2yuzLsKWE6LW7qtCwd7Jn73otsrOvlCOvPBm7OfWMpkJZzQUPDNMHbU9pXa3Hm9tY2/oa5HpY8YC2jO2Iz3j+GTbbxnHVp1Zx4c/LrdXRhbzkXZa02vvidqi9cLeenzkxHV0H88IBUdMVOt6tUn3iGNy5PbUHo/0WSpT62erj0y5Xi3nfWbOOGruWD+edXxa2iu1OXvb9/prKds6xiPGf5RrjPJBdsfOWDB62+rtu+XE6Q0B68elk7r3QtiapDMTcM+FVlJbREYXulI/679nJ9qtx5l9lvGM7ek5Z2rjyIxzq2z2/Og9J2v7futayuiZT1raftbx2avfc97t1Zt1fDLb0Vuv5Zw8g/OPcCWzU2eVWZcdXTxqr8+eOEonY+/YW/ROij3tH/F6b/mzhoJaf5lyme2pTYJbdUuLUU8omLVQjSrNE6U6pcelPlrbP/L4lNrbK9e7wM8gFPxx/hFuaEl/vWW2ys9aWI8YfyYUzAg0GVuTR+vEmO2n9/XRY5Zpu3XR6gkFmdczdWZuT63t7HFpWbxa6mXHlFmkWharoxadlrYz7c86PnvPz9pfo8end+7rPT5XCAQRvywUzL441+VnLayj4++pO/vCyI5pb9GYGT5GJ4Mjni8tMnt1S/urVKfV0dsza6LOhoKtcfTssyMX35G5qSUcZft4xvHJjLf1vMlsW1bv4l567ioLf8llt6A0SZVOot5A0FJmxsndatbiMDq2vW18xTZnz5HSsek5lq3nTG1/lRa4Vs/YnpGypf1SO6f2jl3LOFsXsVpbLdd760J8lKOOz14bPePItJc9b0cDh1DwRnov+p6Jp1dv0CgtfjNl2swsVEeFqa2xjJYf3ZZSm0c7YnvWbZRer41l77WZE3ZpkWm91rNmB4ye/o88PrX+eueAdzk+z3T9LQAAphAKAICIEAoAgIVQAABEhFAAACyEAgAgIoQCAGAhFAAAESEUAAALoQAAiAihAABYCAUAQERcJBT0/sKhV/wCmZ7ftnXkOHvbPnrf/ZZfHgLwm1xiVh75LYR7v4Xr2WMb+S1gs347Xcu2Z8NNz9h6fnMdAMc7/Yy8t8D//Fn7VZq1NmeOL9v2zDsFM3697NbrRy3c62PmjgHAeZx+Ni6961+/vle+1ObIuEbewc8wMxCsyxz5e8mFAoBzOvVsvLeAlN7RXu1OwezP/LcCU88+2So3e/EWCADO5bQzcumjguw72jOGgp7x1trIlm3ZH7XnMndKat8rEAgAzuX0s3LpOwXrv9de2yszuriVHq9f2yvfu9Bn+2r9eGNkPD3jA+D1Tj8rl0JBaZFd/32vTO+YWoPE3uLfszj2Bo9M/a0yI3c/SnWEAoBzOf2snFlYa+VLZZ6tZwGttVEqV/p+way+ZmwTAK93+tm7tshf+TsFmXf1mT4zWt+ZZ8tnvnswYzwAHO/0s/KZQ0FP+7V37rNDwVFhoDQOoQDgmk4/K+99Br/3hblMiJixGPV+Ua80ptrYWsu0fsww8uXCGW0C8FpmbAAgIoQCAGAhFAAAESEUAAALoQAAiAihAABYCAUAQEQIBQDAQigAACJCKAAAFkIBABARQgEAsBAKAICIEAoAgIVQAABEhFAAACyEAgAgIoQCAGAhFAAAESEUAAALoQAAiAihAABYCAUAQEQIBQDAQigAACJCKAAAFkJBo9utvMtut9v//ZSe7+2ntdxMR/e5bj/TX0+d1rKv2NclR47nGcdg6/VZ18WMfvZ+evqrtV16fnRbejyrH87nske59wQdPbFbJ63HCz7bzl6dnvHMUBv7zDHstZXZXy111mXOsq9b+j/qODzjGPQes56wt7XI9vYzKxTsjTNTrmdMrUpB5dXXAce65NGtTU61E3fkpD46FPS826r9ZOrW+hgZY1ZtX5XevbTUWZfZe7xVvmdf18qd6Tg84xiU9kdtf7Ycg9Fzo3dBPGKOGNlne9vVO35+t0se/dEF9VWhIDPhtfTZ0kZ2nHtle4NHr562Z0zcR+/rkYX92cfhqGPQsyhuPd57rqXdGedBa5meOaJ3n+29NlJOaPjdLnd0Wyeo2e1kLpitCzvzLiDTbm38R4SCnnK9thaUzCKTrfOKfV2qc8bj8Ixj0Fqu5xiUglPPdVzaB8+YI7baKI0j8/ze2LLj4Pe53BHOJvXWtJ4t2zqp9yT6lvGVJq9sH7OC1ojseEthaqTdljH27OtsX68MBc86BtlFp3Wxbt0nM/fh0XPEyD5b99EyL/SEI8Hh2i539GYtYL2T78gFPzKB9Y6vVrd1QXvnCWJkX2fKn+U49Cy6LXVqZUphteUYrNvZuxaz27FX7xlzxMg+e6y/N4bS+LKy7XNulztyZwsF6+eyF2vrZDQyvtF6rWPI1tsrP7rAjNbJbmfrxDd6Pj7zONT+PlKnZZFsrVtqJ9NeqZ3s60fMESP7LDvGvX6z14hQ8Dtc8sj1Lnwz6mcu+K0LaGRB6V0Msxdwdjw9k2rv5DCrrxkL9+i+ro1l1hh7+t4r2xOYWkJZZmyZxanU3/r6m7kwlto4Yo7o2Wel51u2PdvHz2sCwbVd8uiNnvgjJ+2siX802IyWHx3PyCLY0k9Le6Oh4Kh9XSo/GpqOOA49YxrZzyPXaXZxe3y8twjv1Z29/3rmiKuEAq7vske3dPKXJsrRE3rWhDk64c2ok3kHOFJ+xNYk1jrZtm5bq1mhoPbOulTnCC0LbU+d7DbPCAUt7/DXr2XCQ+uYWupk7i609J09b2r9CgW/m6Ob1HtBlCbElnq9/Y161UTwjEX6VfV6+3rmcdhbDFoX4a06mcdHhLnMu+VMgNkb35FzxMx91jKe3jc0XJejCwBEhFAAACyEAgAgIoQCAGAhFAAAESEUAAALoQAAiAihAABYCAUAQEQIBQDAQigAACJCKAAAFkIBABARQgEAsBAKAICIEAoAgIVQAABEhFAAACyEAgAgIoQCAGAhFAAAESEUAAALoQAAiAihAABYCAUAQEQIBQDAQigAACLiTUPB7Xb7+5MtX3o8q05r2ZY2Z9Xtqde67SPbBUC/t5p9txac2iK099rsOusyPcGjxWMwGglImTLZgPT4vGAA8HxvM/P2LFR7C3Rp4e6p0zKm9eu1n1n91P7e0v7eflu3LRgAPNfbzLq1BadlAW7pM1un9e5CKZC09NNap2WBbwkrQgHA673FrLu1qGUX1d6PHLJ1thbDnjKl59dtbO2DkbsKPR+llAgEAK/xFjNvSwB4/Hv27sFInex4S221fHSw1cfo3YiZoUAgAHidt5h9Rxa3nkW3d6Fu1ftRwFaQ6QkT2b569h0Az/c2s29tAc28W868u+6p0/uOvyUU7H2kka2/Vaa2PZk2WusCcJy3mX1HQsEr7xS03r3I9Pf42vrPkXFlxw7AOb3VDL33bnnmZ+K9dWa00zvWno8EWseUredOAcDrvOXs2/LOvScwzAgZR4eRo8PAY52j+wFgDrNvwrM/QuhdFFvGk22vd1G3sANcj5kbAIgIoQAAWAgFAEBECAUAwEIoAAAiQigAABZCAQAQEUIBALAQCgCAiBAKAICFUAAARIRQAAAshAIAICKEAgBgIRQAABEhFAAAC6EAAIgIoQAAWAgFAEBECAUAwEIoAAAiQigAABZCAQAQEUIBALAQCgCAiBAKAIDFW4aC2+3292e0ndLj0Tpbr2XHfPTYesfVW36kXut2jJ4XAFf1VrPf1oTfuwjs1Wld5Fuf71ncjxhbb7nH8uufWf3Uwk1mWwUD4B29zcy3nvBnvCvea6O0mPfUKT2XbW/22DJjzZat1d1brLNBJtPf+pxwxwB4R28z620tcDPeGfZ8FJGtUwsFmfpHja00rpZyrYGjZYEv/ezV2XsM8A7eYtbrfUdZa7P1o4jWOlsLWebd+9Fjyyy6pUW2FtDWfZUel+rWXivVEQiAd/QWM1/vrfm9trLv0EfqlMZYCxHPGNtWmRY9gaDluZFxCQTAu3qL2S97R+Bsi8FocMncNh+psx5TT6hq7a/nbk7PfgB4R28z+9UWrlmLzcgt98yYWhbp0t9n1FmX6fl4ovS4ZZy1vrL9CAXAO3ub2e9x4dr7zHuk3dpzPXW2xne2OwW9C/t6e0Y+fmgpY8EH2PdWM+Teu9WRheIZoaAUXmYtfLNCUc/i3nOXpqV8Sz13CoB39pazX8vn5Zm2ttqeUaf3lnvPrfOZdY5YfHuOV89xFgqAd2b2G3Tku/LaZ+alBezIjxCywWd9h6N1kR5Z1C3sAO3MnABARAgFAMBCKAAAIkIoAAAWQgEAEBFCAQCwEAoAgIgQCgCAhVAAAESEUAAALIQCACAihAIAYCEUAAARIRQAAAuhAACICKEAAFgIBQBARAgFAMBCKAAAIkIoAAAWQgEAEBFCAQCwEAoAgIgQCgCAhVAAAESEUAAALE4ZCm63m58n/wDAKVcDi9Rz2d8ARAgFhP0NwB+nXA22FqnSwrX3Wmud9XOPj2sLZ3ZhzbSZ3f7a9mU/NhAKAIi4SCioLV5b5fcWv73P0LcW65ZFs2Vh3Wq3FhZmBaXaOAB4X6dcDUoLZGnxbml3/XwpRIy0na3Tss2ZLwtuBaF1OaEAgEenXA2ydwb2yrXeaaiNY+vxjG/1Z0JBy92E0thLZYQCACJOHgp+/t7zTnfvFn3pnfVeH5lFPnN7f2/8tb/vfQTi4wMAZjrlajDy8UHpHXsmROy93jLm7HO93ynILOaZOxhCAQCPTrkajISCvbK18qVFs3XM2eeyoaB2V2Pvzsf677M+VgHgdzrlajAaCmbdKcjePciGklKbmY8PamGh1o9QAEDJKVeDvQWtdVGbdaegtmj2hIL19rR8fNESckrhQCgA4NEpV4OWz9dLj1sWwUwQyX5EUCtfuxORrVe7o9LTDgDv65SrwUgo6PnMfu/1bPjYk30HXxtrzzZlFnqhAIBHp1wNst8ReHxtq43s4v743F77mbsG6/LZ7Wt9fWucpXGUfrL9AfD7nXI1sEg9l/0NQIRQQNjfAPxxytXAIvVc9jcAEScOBX6e+wMAVgMAICKEAgBgIRQAABEhFAAAC6EAAIgIoQAAWAgFAEBECAUAwEIo2NH6H/r0/AdAz/pPg1r6WZe98n9s1LItI7/A6khbfWd/YdZe+ZY2Zz3/TGe+Fnv6fcbYzBHbj9evvcN/Avc7tuIAs0PB1olzllDQ+z8f9lwkz7ywzhQKtraxZZ+1jmlv21u3s7T4753Tr54kjwoFrddIZl+UrqmR7Wl1pjnimUYCzlH77NXONZoNsybknvKzT5B1uZ4T5OhtGVlIM3V76jy+lr2IspPwVtsjE0VmPKUJP7v92SAxOhHVjmF2u3r1jrf3OplZJrM/9o7/yDxx9D47eo54pux4Zizwvefms516dDNSVGsbvSdtayjo2a5nbUvreHoWq9Yxtm5LSyhomQh6zQgFtXZ/Hs8MN7NCSo/WkDGyvS3tl7a5dpxr+2t0nnjmPsuOp3cRPVLruNbHr/Zcbz9ncL4RrczYaT0L++jFtff6zMUlWy6zLc9a4HsvkpbJqycwlCb43gk62/7j63t19sae3V+1stlj3Nt3q1mLYc/1MqtM9rrbetwzTxy9z541RzzTyHh6z4ee8/OZzjeilWdMMKVkWCqzLpuZQNcXfWtqPHpbsv08tvOKSSJzLEpjahnbrFDw+PeRyac2nq0gkTnPsvuu1G7PYpYZS6nc6PmePb6Za7e030tt7o2lZf8+c59t1Sn1deS5MqJl/tk71rX57szbv+V8I1qZOcEcVSczqbSUmTWu1jrrCW2kfrZMTyiYsaC2lK0FidYxt0742efWY2rdtz39tDz/OLaadbmRY54t3xIKMq+1/j07ltJ+P3qfPWOO+Ck3K3RkglTr+HqcMQBsOf0ozx4KsifVjIWlZVy9dTIL4c/zPRfjaHLunfBL9ffGkF2wR0JBbbylbcguTqW2W/tev9Z6DHv2V20cLWMe6WdWKCi1NTJPPHufHTVHPNY9Qs+4nlXnDM41mg0zdlhPG9k62QuxdNIcMa6WOqMnb3aS2HqtZ1LO6lnkth5nJr/MWNb7sWWCrI1xr07rRFzrr6Xv1nqlMkcvcJm6meO2t+9q59bj873zxJH77JlzRM/4X2F0/551+845qgd7O/OoSaKlTsukOGuBOTLg9NTJToJ7z7cuci16Q8GRQaVHzznTMwltXVel669ngeg5r1rqjfTR+/xemZbFcv14xjE/wxy5LjcaOGdrvdZ7A9HIsXm2844stlPz4/MjbWTqveL17EnZ4ogLPnOiZ8tk+s1egJl2SnWOTPRbE31tkqwtDrW+as/NrjNzsjvyfD9iX6zL9ITk7OuZ66TFmeaIZxkJhbVrea/+K7c369yje6EZKbblJDnyhDnyXUBLnSMCT6afI4PEyJha/v7zOHvOzAo3rdfBGSa80cC+V27m+dtS/hnzxFnmiGcZDYXrULAXgPaO15kDwvlGBAC8hFAAAESEUAAALIQCACAihAIAYCEU8Ffrt617XgPgvC47e1t49vXuG6EA4L1dcva26NTN+s9LMv9JypH/gQ0Az3PJ2duiU3dkKMgGBccJ4FouN2tbaPJm/s+LW8+tF/+9PwG4hsvN2haavOx/ofrzZ+m/U83cMciGAncRAM7pcjOzxSRvxv9N3vKFwkwoKP3f/gC81uVmZQtJ3lGhoHQ3oeUX9TiWAOdyyVnZYlI36zeYzb5T8PO8YwhwPpecmS0odc8MBf5JIsDvcNnZ28Kzb+bvOa+FgtYgAcB5mb3ZfKefucXfEyQAOC+zNwAQEUIBALAQCgCAiBAKAICFUAAARIRQAAAshAIAICKEAgBgIRQAABEhFAAAi/8B9/qp9DYexXsAAAAASUVORK5CYII=" width="517" height="615"/>

  以上是《2019年人教版二年级上册数学同步检测:<第六单元>》的内容,更多小学二年级上册数学同步检测请关注新东方在线小学网。


英语+新概念学习资料大礼包

微信扫一扫 自动获取网盘链接

更多资料
更多>>
更多内容

小学英语资料大礼包合集

扫描下方二维码自动领取

更多>>
更多英语课程>>
更多>>
更多资料