小学趣味智商测试题:缺失的数字

2020-09-08 17:37:00来源:网络

  由于每一列都是四个不同的数字相加,所以一列数字加起来得到的和最大为9+8+7+6,即30。由于I不能等于0,所以右列向左列的进位不能大于2。由于向左列的进位不能大于2,

  所以I(作为和的首位数)不能等于3。于是,必定等于1或2。

  如果I等于1,则右列数字之和必定是11或21,而左列数字之和相应为10或9。于是,

  (B+D+F+H)+(A+C+E+G)+I=11+l0+l=22,或者(B+D+F+H)+(A+C+E+G)+I:21+9+l=31。

  但是,从1到9这十个数字之和是45,而这十个数字之和与上述两个式子中九个数字之和的差都大于9。这种情况是不可能的。因此I必定等于2。

  既然I等于2,那么右列数字之和必定是12或22,而左列数字之和相应为2l或20。于是,(B+D+F+H)+(A+C+E+G)+I=12+2l+2=35,或者(B+D+F+H)+(A+C+E+G)+I=22+20+2=45。

  这里第一种选择不成立,因为那十个数字之和与式子中九个数字之和的差大于9。因此缺失的数字必定是1。

  至少存在一种这样的加法式子,这可以证明如下:按惯例,两位数的首位数字不能是0,所以0只能出现于右列。于是右列其他三个数字之和为22。这样,右列的四个数字只有两种可能:0、5、8、9(左列数字相应为3、4、6、7),或0、6、7、9(左列数字相应为3、4、5、8)。显然,这样的加法式子有很多。

  以上是<小学趣味智商测试题:缺失的数字>的内容,更多小学趣味智商测试题请关注新东方在线小学网

英语+新概念学习资料大礼包

微信扫一扫 自动获取网盘链接

更多资料
更多>>
更多内容

小学英语资料大礼包合集

扫描下方二维码自动领取

更多>>
更多英语课程>>
更多>>
更多资料